Advertisements
Advertisements
Question
Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Solution
L.H.S. = `(9!)/(3!6!) + (9!)/(4!5!)`
= `(9!)/(3! xx 6 xx 5!) + (9!)/(4 xx 3! xx 5!)`
= `(9!)/(3!5!)[1/6 + 1/4]`
= `(9!)/(3!5!)[(4 + 6)/(6 xx 4)]`
= `(10 xx 9!)/(6 xx 5! xx 4 xx 3!)`
= `(10!)/(6!4!)`
= `(10!)/(4!6!)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Evaluate: 8!
Evaluate: 10! – 6!
Evaluate: (10 – 6)!
Compute: `(12/6)!`
Compute: 3! × 2!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
3 × 6 × 9 × 12 × 15
Write in terms of factorial.
6 × 7 × 8 × 9
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6
Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`
Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`
Select the correct answer from the given alternatives.
Find the number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.
Eight white chairs and four black chairs are randomly placed in a row. The probability that no two black chairs are placed adjacently equals.
Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.