Advertisements
Advertisements
प्रश्न
Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
उत्तर
L.H.S. = `(9!)/(3!6!) + (9!)/(4!5!)`
= `(9!)/(3! xx 6 xx 5!) + (9!)/(4 xx 3! xx 5!)`
= `(9!)/(3!5!)[1/6 + 1/4]`
= `(9!)/(3!5!)[(4 + 6)/(6 xx 4)]`
= `(10 xx 9!)/(6 xx 5! xx 4 xx 3!)`
= `(10!)/(6!4!)`
= `(10!)/(4!6!)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate: 8!
Evaluate: 10!
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: 3! × 2!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
6 × 7 × 8 × 9
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `(1!)/("n"!) = (1!)/(4!) - 4/(5!)`
Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24 : 1
Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`
Simplify `((2"n" + 2)!)/((2"n")!)`
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`
Select the correct answer from the given alternatives.
In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.