Advertisements
Advertisements
प्रश्न
Evaluate: 10!
उत्तर
10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
= 3628800
APPEARS IN
संबंधित प्रश्न
Evaluate: 10! – 6!
Evaluate: (10 – 6)!
Compute: `(12!)/(6!)`
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Compute: `(8!)/((6 - 4)!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
3 × 6 × 9 × 12 × 15
Write in terms of factorial.
6 × 7 × 8 × 9
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if `(1!)/("n"!) = (1!)/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24 : 1
Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`
Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`
Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?
Select the correct answer from the given alternatives.
In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate
Answer the following:
Find the number of words that can be formed by using all the letters in the word REMAIN If these words are written in dictionary order, what will be the 40th word?
Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.