Advertisements
Advertisements
प्रश्न
Compute: `(12!)/(6!)`
उत्तर
`(12!)/(6!) = (12 xx 11 xx 10 xx 9 xx 8 xx 7 xx 6!)/(6!)`
= 12 × 11 × 10 × 9 × 8 × 7
= 665280
APPEARS IN
संबंधित प्रश्न
Evaluate: 8!
Evaluate: 10! – 6!
Evaluate: (10 – 6)!
Compute: (3 × 2)!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
3 × 6 × 9 × 12 × 15
Write in terms of factorial.
5 × 10 × 15 × 20
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6
Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Simplify `((2"n" + 2)!)/((2"n")!)`
Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`
Simplify n[n! + (n – 1)!] + n2(n – 1)! + (n + 1)!
Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`
Select the correct answer from the given alternatives.
In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?
In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?
Select the correct answer from the given alternatives.
In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate
Eight white chairs and four black chairs are randomly placed in a row. The probability that no two black chairs are placed adjacently equals.
Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.