हिंदी

Find n, if (n + 3)! = 110 × (n + 1)! - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find n, if (n + 3)! = 110 × (n + 1)!

योग

उत्तर

(n + 3)! = 110 × (n + 1)!

(n + 3)(n + 2)(n + 1)! = 110(n + 1)!

∴ (n + 3)(n + 2) = 110

∴ n2 + 5n + 6 = 110

∴ n2 + 5n + 6 – 110 = 0

∴ n2 + 5n – 104 = 0

∴ n2 + 13n – 8n – 104 = 0

∴ n(n + 13) – 8(n + 13) = 0

∴ (n + 13)(n – 8) = 0

∴ n + 13 = 0 or n – 8 = 0

∴ n = – 13 or n = 8

But n ∈ N

∴ n ≠ – 13

Hence, n = 8.

shaalaa.com
Factorial Notation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Permutations and Combination - Exercise 3.2 [पृष्ठ ४९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Permutations and Combination
Exercise 3.2 | Q 5. (v) | पृष्ठ ४९

संबंधित प्रश्न

Evaluate: 8!


Evaluate: 10! – 6!


Compute: 3! × 2!


Compute: `(6! - 4!)/(4!)`


Compute: `(8!)/(6! - 4!)`


Write in terms of factorial.

6 × 7 × 8 × 9


Write in terms of factorial.

5 × 10 × 15 × 20


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12


Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8


Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`


Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`


Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!


Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6


Find n, if: `((2"n")!)/(7!(2"n" - 7)!) : ("n"!)/(4!("n" - 4)!)` = 24 : 1


Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1


Simplify `((2"n" + 2)!)/((2"n")!)`


Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`


Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`


Simplify `("n" + 2)/("n"!) - (3"n" + 1)/(("n" + 1)!)`


Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`


Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`


Select the correct answer from the given alternatives.

In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?


Select the correct answer from the given alternatives.

In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate


Select the correct answer from the given alternatives.

Find the number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.


Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______


If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.


Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×