हिंदी

Show that (2n)!n! = 2n (2n – 1)(2n – 3) ... 5.3.1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1

योग

उत्तर

L.H.S. = `((2"n")!)/("n"!)` 

= `(2"n"(2"n" - 1)(2"n" - 2)(2"n" - 3)(2"n" - 4) ... 5.4.3.2.1)/("n"!)`

= `([2"n"(2"n" - 2)(2"n" - 4)  ...  6.4.2][(2"n" - 1)(2"n" - 3)  ...  5.3.1])/("n"!)`

= `([2("n")*2("n" - 1)*2("n" - 2) ... 2(3)*2(2)*2(1)]*[(2"n" - 1)(2"n" - 3)  ...  5.3.1])/("n"!)`

= `([2^"n"("n")("n" - 1)("n" - 2)  ...  3.2.1][(2"n" - 1)(2"n" - 3)  ...  5.3.1])/("n"!)`

= `(2^"n" xx "n"![(2"n" - 1)(2"n" - 3)  ...  5.3.1])/("n"!)`

= 2n(2n – 1)(2n – 3) ... 5.3.1

= R.H.S.

shaalaa.com
Factorial Notation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Permutations and Combination - Exercise 3.2 [पृष्ठ ५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Permutations and Combination
Exercise 3.2 | Q 9 | पृष्ठ ५०

संबंधित प्रश्न

Evaluate: 10!


Evaluate: 10! – 6!


Compute: `(12!)/(6!)`


Compute: (3 × 2)!


Compute: 3! × 2!


Compute: `(9!)/(3!  6!)`


Compute: `(6! - 4!)/(4!)`


Compute: `(8!)/(6! - 4!)`


Compute: `(8!)/((6 - 4)!)`


Write in terms of factorial.

3 × 6 × 9 × 12 × 15


Write in terms of factorial.

6 × 7 × 8 × 9


Write in terms of factorial.

5 × 10 × 15 × 20


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12


Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8


Find n, if (n + 1)! = 42 × (n – 1)!


Find n, if: `((17 - "n")!)/((14 - "n")!)` = 5!


Find n, if: `((15 - "n")!)/((13 - "n")!)` = 12


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6


Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`


Simplify `((2"n" + 2)!)/((2"n")!)`


Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`


Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`


Simplify n[n! + (n – 1)!] + n2(n – 1)! + (n + 1)!


Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`


Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`


Select the correct answer from the given alternatives.

In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?


In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?


Find the number of integers greater than 7,000 that can be formed using the digits 4, 6, 7, 8, and 9, without repetition: ______


If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.


3. 9. 15. 21 ...... upto 50 factors is equal to ______.


Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×