हिंदी

Simplify 1(n-1)!+1-n(n+1)! - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`

योग

उत्तर

`1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`

= `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)"n"("n" - 1)!)`

= `1/(("n" - 1)!)[1 + (1 - "n")/("n"("n" + 1))]`

= `1/(("n" - 1)!)[("n"("n" + 1) + (1 - "n"))/("n"("n" + 1))]`

= `1/(("n" - 1)!)[("n"^2 + "n" + 1 - "n")/("n"("n" + 1))]`

= `("n"^2 + 1)/("n"("n" - 1)!("n" + 1))`

= `("n"^2 + 1)/("n"! xx ("n" + 1))`

= `("n"^2 + 1)/(("n" + 1)!)`

shaalaa.com
Factorial Notation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Permutations and Combination - Exercise 3.2 [पृष्ठ ५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Permutations and Combination
Exercise 3.2 | Q 10. (vi) | पृष्ठ ५०

संबंधित प्रश्न

Evaluate: 8!


Evaluate: 10!


Evaluate: 10! – 6!


Evaluate: (10 – 6)!


Compute: `(12!)/(6!)`


Compute: (3 × 2)!


Compute: `(9!)/(3!  6!)`


Compute: `(6! - 4!)/(4!)`


Compute: `(8!)/(6! - 4!)`


Write in terms of factorial.

5 × 6 × 7 × 8 × 9 × 10


Write in terms of factorial.

6 × 7 × 8 × 9


Write in terms of factorial.

5 × 10 × 15 × 20


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12


Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10


Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8


Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`


Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`


Find n, if (n + 1)! = 42 × (n – 1)!


Find n, if (n + 3)! = 110 × (n + 1)!


Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3


Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`


Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`


Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1


Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`


Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`


Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`


Select the correct answer from the given alternatives.

In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?


If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.


Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×