Advertisements
Advertisements
प्रश्न
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
उत्तर
`1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
= `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)"n"("n" - 1)!)`
= `1/(("n" - 1)!)[1 + (1 - "n")/("n"("n" + 1))]`
= `1/(("n" - 1)!)[("n"("n" + 1) + (1 - "n"))/("n"("n" + 1))]`
= `1/(("n" - 1)!)[("n"^2 + "n" + 1 - "n")/("n"("n" + 1))]`
= `("n"^2 + 1)/("n"("n" - 1)!("n" + 1))`
= `("n"^2 + 1)/("n"! xx ("n" + 1))`
= `("n"^2 + 1)/(("n" + 1)!)`
APPEARS IN
संबंधित प्रश्न
Evaluate: 8!
Evaluate: 10!
Evaluate: 10! – 6!
Evaluate: (10 – 6)!
Compute: `(12!)/(6!)`
Compute: (3 × 2)!
Compute: `(9!)/(3! 6!)`
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
6 × 7 × 8 × 9
Write in terms of factorial.
5 × 10 × 15 × 20
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 8, r = 6
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `"n"/(6!) = 4/(8!) + 3/(6!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Show that `("n"!)/("r"!("n" - "r")!) + ("n"!)/(("r" - 1)!("n" - "r" + 1)!) = (("n" + 1)!)/("r"!("n" - "r" + 1)!)`
Show that `(9!)/(3!6!) + (9!)/(4!5!) = (10!)/(4!6!)`
Show that `((2"n")!)/("n"!)` = 2n (2n – 1)(2n – 3) ... 5.3.1
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify `1/("n"!) - 1/(("n" - 1)!) - 1/(("n" - 2)!)`
Simplify `1/("n"!) - 3/(("n" + 1)!) - ("n"^2 - 4)/(("n" + 2)!)`
Select the correct answer from the given alternatives.
In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all person of the same nationality sit together?
If `((11 - "n")!)/((10 - "n")!) = 9,`then n = ______.
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.