Advertisements
Advertisements
Question
Write in terms of factorial.
6 × 7 × 8 × 9
Solution
6 × 7 × 8 × 9
= `(1 xx 2 xx 3 xx 4 xx 5 xx 6 xx 7 xx 8 xx 9)/(1 xx 2 xx 3 xx 4 xx 5)`
= `(9!)/(5!)`
∴ 6 × 7 × 8 × 9 = `(9!)/(5!)`
APPEARS IN
RELATED QUESTIONS
Evaluate: 10!
Evaluate: (10 – 6)!
Compute: `(12/6)!`
Compute: (3 × 2)!
Compute: 3! × 2!
Compute: `(6! - 4!)/(4!)`
Compute: `(8!)/(6! - 4!)`
Write in terms of factorial.
5 × 6 × 7 × 8 × 9 × 10
Write in terms of factorial.
3 × 6 × 9 × 12 × 15
Write in terms of factorial.
5 × 10 × 15 × 20
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 12, r = 12
Evaluate `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 10
Evaluate : `("n"!)/("r"!("n" - "r")!)` for n = 15, r = 8
Find n, if `"n"/(8!) = 3/(6!) + (1!)/(4!)`
Find n, if `(1!)/("n"!) = (1!)/(4!) - 4/(5!)`
Find n, if (n + 1)! = 42 × (n – 1)!
Find n, if (n + 3)! = 110 × (n + 1)!
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 5)!)` = 5 : 3
Find n, if: `("n"!)/(3!("n" - 3)!) : ("n"!)/(5!("n" - 7)!)` = 1 : 6
Simplify `((2"n" + 2)!)/((2"n")!)`
Simplify `(("n" + 3)!)/(("n"^2 - 4)("n" + 1)!)`
Simplify n[n! + (n – 1)!] + n2(n – 1)! + (n + 1)!
Simplify `1/(("n" - 1)!) + (1 - "n")/(("n" + 1)!)`
Simplify `("n"^2 - 9)/(("n" + 3)!) + 6/(("n" + 2)!) - 1/(("n" + 1)!)`
In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?
3. 9. 15. 21 ...... upto 50 factors is equal to ______.
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn + 1 – Tn = 21, then n is equal to ______.