मराठी

Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is ______.

पर्याय

  • `1/3`

  • `1/6`

  • `2/7`

  • `1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

Seven persons are to be seated in a row. The probability that two particular persons sit next to each other is `2/7`.

Explanation:

The two particular persons to be seated next each other then, they form one group.

Now the permutation of 6 persons = 6! × 2!

And Total number of permutations of 7 persons = 7!

∴ Required probability = `(6! xx 2!)/(7!)`

= `(6! xx 2)/(7 xx 6!)`

= `2/7`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Probability - Exercise [पृष्ठ ३००]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 16 Probability
Exercise | Q 21 | पृष्ठ ३००

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A coin is tossed twice, what is the probability that at least one tail occurs?


A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that all will be blue?


4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?


A and B throw a pair of dice. If A throws 9, find B's chance of throwing a higher number.

 

A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?


If a letter is chosen at random from the English alphabet, find the probability that the letter is  a vowel .


If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iv)
\[\frac{1}{14}\]
\[\frac{2}{14}\]
\[\frac{3}{14}\]
\[\frac{4}{14}\]
\[\frac{5}{14}\]
\[\frac{6}{14}\]
\[\frac{15}{14}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


In a leap year the probability of having 53 Sundays or 53 Mondays is ______.


Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are white


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are red


If the letters of the word ASSASSINATION are arranged at random. Find the probability that no two A’s are coming together


Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.


While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.


Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×