Advertisements
Advertisements
प्रश्न
In a leap year the probability of having 53 Sundays or 53 Mondays is ______.
पर्याय
`2/7`
`3/7`
`4/7`
`5/7`
उत्तर
In a leap year the probability of having 53 Sundays or 53 Mondays is `3/7`.
Explanation:
Since a leap year has 366 days and hence 52 weeks and 2 days.
The 2 days can be SM, MT, TW, WTh, ThF, FSt, StS.
Therefore, P(53 Sundays or 53 Mondays) = `3/7`.
APPEARS IN
संबंधित प्रश्न
A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12
There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?
In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]
Fill in the blank in following table:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.35 | ... | 0.25 | 0.6 |
If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the digits are repeated?
Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.
A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?
In a lottery, a person chooses six different numbers at random from 1 to 20, and if these six numbers match with six number already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game?
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(iii) | 0.7 | 0.06 | 0.05 | 0.04 | 0.03 | 0.2 | 0.1 |
In a single throw of three dice, find the probability of getting the same number on all the three dice.
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective
Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?
Three squares of chessboard are selected at random. The probability of getting 2 squares of one colour and other of a different colour is ______.
Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs
If the letters of the word ASSASSINATION are arranged at random. Find the probability that no two A’s are coming together
Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.
While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.
If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.
The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.
The sum of probabilities of two students getting distinction in their final examinations is 1.2
C1 Probability |
C2 Written Description |
(a) 0.95 | (i) An incorrect assignment |
(b) 0.02 | (ii) No chance of happening |
(c) – 0.3 | (iii) As much chance of happening as not |
(d) 0.5 | (iv) Very likely to happen |
(e) 0 | (v) Very little chance of happening |
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?
If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the repetition of digits is not allowed?