Advertisements
Advertisements
प्रश्न
Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?
उत्तर
Given that A is twice as likely to be selected as B
i.e. P(A) = 2P(B)
And C is twice as likely to be selected as D
∴ P(C) = 2P(D)
⇒ P(B) = 2P(D)
⇒ `(P(A))/2` = 2P(D)
⇒ P(D) = `1/4`P(A)
Now B and C are given about the same chance
∴ P(B) = P(C)
Since, sum of all probabilities = 1
∴ P(A) + P(B) + P(C) + P(D) = 1
⇒ `P(A) + (P(A))/2 + (P(A))/2 + (P(A))/4` = 1
⇒ 4P(A) + 2P(A) + 2P(A) + P(A) = 4
⇒ 9P(A) = 4
⇒ P(A) = `4/9`
P(C will be selected) = P(C) = P(B)
= `(P(A))/2`
= `4/9 xx 1/2`
= 2/9`
APPEARS IN
संबंधित प्रश्न
Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7}
Assignment | ω1 | ω2 | ω3 | ω4 | ω5 | ω6 | ω7 |
(a) | 0.1 | 0.01 | 0.05 | 0.03 | 0.01 | 0.2 | 0.6 |
(b) | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` | `1/7` |
(c) | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
(d) | –0.1 | 0.2 | 0.3 | 0.4 | -0.2 | 0.1 | 0.3 |
(e) | `1/14` | `2/14` | `3/14` | `4/14` | `5/14` | `6/14` | `15/14` |
A die is thrown, find the probability of following events:
- A prime number will appear,
- A number greater than or equal to 3 will appear,
- A number less than or equal to one will appear,
- A number more than 6 will appear,
- A number less than 6 will appear.
A card is selected from a pack of 52 cards.
- How many points are there in the sample space?
- Calculate the probability that the card is an ace of spades.
- Calculate the probability that the card is
- an ace
- black card.
A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.
From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.
Check whether the following probabilities P(A) and P(B) are consistently defined
P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8
Fill in the blank in following table:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.35 | ... | 0.25 | 0.6 |
Fill in the blank in following table:
P(A) | P(B) | P(A ∩ B) | P(A ∪ B) |
0.5 | 0.35 | .... | 0.7 |
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that all will be blue?
From the employees of a company, 5 persons are selected to represent them in the managing committee of the company. Particulars of five persons are as follows:
S. No. | Name | Sex | Age in years |
1. | Harish | M | 30 |
2. | Rohan | M | 33 |
3. | Sheetal | F | 46 |
4. | Alis | F | 28 |
5. | Salim | M | 41 |
A person is selected at random from this group to act as a spokesperson. What is the probability that the spokesperson will be either male or over 35 years?
Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.
Two unbiased dice are thrown. Find the probability that neither a doublet nor a total of 8 will appear
Two unbiased dice are thrown. Find the probability that the sum of the numbers obtained on the two dice is neither a multiple of 2 nor a multiple of 3
If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(i) | 0.1 | 0.01 | 0.05 | 0.03 | 0.01 | 0.2 | 0.6 |
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(ii) |
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that all 10 are good
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective
One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)
A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are white
A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are red
A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all one ball is red and two balls are white
If the letters of the word ASSASSINATION are arranged at random. Find the probability that two I’s and two N’s come together
While shuffling a pack of 52 playing cards, 2 are accidentally dropped. Find the probability that the missing cards to be of different colours ______.
Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.
The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.
If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?
A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?