मराठी

The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52. - Mathematics

Advertisements
Advertisements

प्रश्न

The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

Explanation:

Given that: P(to see giraffee) = 0.72

P(to see bears) = 0.84

P(to see both giraffee and bears) = 0.52

∴ P(to see giraffee or bear) = P(to see giraffee) + P((to see bear) – P(to see both)

= 0.72 + 0.84 – 0.52

= 1.04 which is not possible.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Probability - Exercise [पृष्ठ ३०१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 16 Probability
Exercise | Q 30 | पृष्ठ ३०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A coin is tossed twice, what is the probability that at least one tail occurs?


A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


There are four men and six women on the city council. If one council member is selected for a committee at random, how likely is it that it is a woman?


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.7, P(A ∩ B) = 0.6


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.35 ... 0.25 0.6

If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


In a lottery, a person chooses six different numbers at random from 1 to 20, and if these six numbers match with six number already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game?


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(i) 0.1 0.01 0.05 0.03 0.01 0.2 0.6

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective


A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that none is defective


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


Without repetition of the numbers, four-digit numbers are formed with the numbers 0, 2, 3, 5. The probability of such a number divisible by 5 is ______.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


The probabilities that a typist will make 0, 1, 2, 3, 4, 5 or more mistakes in typing a report are, respectively, 0.12, 0.25, 0.36, 0.14, 0.08, 0.11. 


The sum of probabilities of two students getting distinction in their final examinations is 1.2


C1
Probability
C2
Written Description
(a) 0.95 (i) An incorrect assignment
(b) 0.02 (ii) No chance of happening
(c) – 0.3 (iii) As much chance of happening as not
(d) 0.5 (iv) Very likely to happen
(e) 0 (v) Very little chance of happening

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×