Advertisements
Advertisements
प्रश्न
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`
उत्तर
From the given Venn diagram
`P(A ∩ barB)` = P(A) – P(A ∩ B)
= 0.13 + 0.07 – 0.07
= 0.13
APPEARS IN
संबंधित प्रश्न
A die is thrown, find the probability of following events:
- A prime number will appear,
- A number greater than or equal to 3 will appear,
- A number less than or equal to one will appear,
- A number more than 6 will appear,
- A number less than 6 will appear.
In a lottery, person chooses six different natural numbers at random from 1 to 20, and if these six numbers match with the six numbers already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game? [Hint: order of the numbers is not important.]
The number lock of a suitcase has 4 wheels, each labelled with ten digits i.e., from 0 to 9. The lock opens with a sequence of four digits with no repeats. What is the probability of a person getting the right sequence to open the suitcase?
Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.
Two unbiased dice are thrown. Find the probability that neither a doublet nor a total of 8 will appear
A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?
If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .
Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S = {w1, w2, w3, w4, w5, w6, w7}:
Elementary events: | w1 | w2 | w3 | w4 | w5 | w6 | w7 |
(ii) |
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
\[\frac{1}{7}\]
|
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective
A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability thatat least one is defective
An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is red or yellow and numbered 1, 2, 3 or 4
An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is white and numbered higher than 12 or yellow and numbered higher than 26.
If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A ∪ B)
The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)
A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all one ball is red and two balls are white
In a non-leap year, the probability of having 53 tuesdays or 53 wednesdays is ______.
6 boys and 6 girls sit in a row at random. The probability that all the girls sit together is ______.
If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.
The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.
The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.
If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?
C1 Probability |
C2 Written Description |
(a) 0.95 | (i) An incorrect assignment |
(b) 0.02 | (ii) No chance of happening |
(c) – 0.3 | (iii) As much chance of happening as not |
(d) 0.5 | (iv) Very likely to happen |
(e) 0 | (v) Very little chance of happening |