मराठी

Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7} Assignment ω1 ω2 ω3 ω4 ω5 ω6 ω7 (a) 0.1 0.01 0.05 0.03 0.01 0.2 0.6 - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7}

Assignment ω1 ω2 ω3 ω4 ω5 ω6 ω7
(a) 0.1 0.01 0.05 0.03 0.01 0.2 0.6
(b) `1/7` `1/7` `1/7` `1/7` `1/7` `1/7` `1/7`
(c) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(d) –0.1 0.2 0.3 0.4 -0.2 0.1 0.3
(e) `1/14` `2/14` `3/14` `4/14` `5/14` `6/14` `15/14`
बेरीज

उत्तर

(a) 0.1 + 0.01 + 0.05 + 0.03 + 0.01 + 0.2 + 0.6

= 1.00

The sum of the given probabilities of the events is 1.

So the given probability is valid.

(b) Sum of the given probabilities

= `1/7 + 1/7 + 1/7 + 1/7 + 1/7 + 1/7 + 1/7`

= `7/7`

= 1

∴ The given probability is valid.

(c) Sum of the given probabilities

= 0.1 + 0.1 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7

= 2.7

This is more than one

So the given probability is not valid.

(d) The probability of any event cannot be negative.

Here two probabilities –0.1 and –0.2 are negative.

So the given probability is not valid.

(e) The sum of the given probabilities

`1/14 + 2/14 + 3/14 + 4/14 + 5/14 + 6/14+ 15/14`

= `36/14`

= `18/7`

which is more than one

So the given probability is not valid.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Probability - Exercise 16.3 [पृष्ठ ४०३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 16 Probability
Exercise 16.3 | Q 1 | पृष्ठ ४०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A die is thrown, find the probability of following events:

  1. A prime number will appear,
  2. A number greater than or equal to 3 will appear,
  3. A number less than or equal to one will appear,
  4. A number more than 6 will appear,
  5. A number less than 6 will appear.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


A fair coin is tossed four times, and a person win Re 1 for each head and lose Rs 1.50 for each tail that turns up.

From the sample space calculate how many different amounts of money you can have after four tosses and the probability of having each of these amounts.


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

Check whether the following probabilities P(A) and P(B) are consistently defined

P(A) = 0.5, P(B) = 0.4, P(A ∪ B) = 0.8


Fill in the blank in following table:

P(A) P(B) P(A ∩ B) P(A ∪ B)
0.35 ... 0.25 0.6

4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.

 

If a letter is chosen at random from the English alphabet, find the probability that the letter is  a vowel .


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(ii)
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]
\[\frac{1}{7}\]

Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iii) 0.7 0.06 0.05 0.04 0.03 0.2 0.1

In a single throw of three dice, find the probability of getting the same number on all the three dice.


Two dice are thrown together. The probability that neither they show equal digits nor the sum of their digits is 9 will be


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is blue or white


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 1, 2, 3, 4 or 5


In a leap year the probability of having 53 Sundays or 53 Mondays is ______.


If the letters of the word ALGORITHM are arranged at random in a row what is the probability the letters GOR must remain together as a unit?


Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that C will be selected?


Four candidates A, B, C, D have applied for the assignment to coach a school cricket team. If A is twice as likely to be selected as B, and B and C are given about the same chance of being selected, while C is twice as likely to be selected as D, what are the probabilities that A will not be selected?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(A)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine `P(A ∩ barB)`


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine P(B ∩ C)


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs


A bag contains 8 red and 5 white balls. Three balls are drawn at random. Find the probability that all the three balls are red


If the letters of the word ASSASSINATION are arranged at random. Find the probability that four S’s come consecutively in the word


In a non-leap year, the probability of having 53 tuesdays or 53 wednesdays is ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.


The probability that a student will pass his examination is 0.73, the probability of the student getting a compartment is 0.13, and the probability that the student will either pass or get compartment is 0.96.


C1
Probability
C2
Written Description
(a) 0.95 (i) An incorrect assignment
(b) 0.02 (ii) No chance of happening
(c) – 0.3 (iii) As much chance of happening as not
(d) 0.5 (iv) Very likely to happen
(e) 0 (v) Very little chance of happening

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?


If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the repetition of digits is not allowed?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×