मराठी

If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the repetition of digits is not allowed? - Mathematics

Advertisements
Advertisements

प्रश्न

If 4-digit numbers greater than 5,000 are randomly formed from the digits 0, 1, 3, 5, and 7, what is the probability of forming a number divisible by 5 when, the repetition of digits is not allowed?

बेरीज

उत्तर

When repetition of digits is not allowed

The thousands place can be filled with either of the two digits 5 or 7.

The remaining 3 places can be filled with any of the remaining 4 digits.

∴ Total number of 4-digit numbers greater than 5000 = 2 × 4 × 3 × 2

= 48

When the digit at the thousands place is 5, the units place can be filled only with 0 and the tens and hundreds places can be filled with any two of the remaining 3 digits.

∴Here, number of 4-digit numbers starting with 5 and divisible by 5

= 3 × 2 = 6

When the digit at the thousands place is 7, the units place can be filled in two ways (0 or 5) and the tens and hundreds places can be filled with any two of the remaining 3 digits.

∴ Here, number of 4-digit numbers starting with 7 and divisible by 5

= 1 × 2 × 3 × 2 = 12

∴Total number of 4-digit numbers greater than 5000 that are divisible by 5 = 6 + 12 = 18

Thus, the probability of forming a number divisible by 5 when the repetition of digits is not allowed is `18/48` = `3/8`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which of the following can not be valid assignment of probabilities for outcomes of sample space S = {ω1, ω2,ω3,ω4,ω5,ω6,ω7}

Assignment ω1 ω2 ω3 ω4 ω5 ω6 ω7
(a) 0.1 0.01 0.05 0.03 0.01 0.2 0.6
(b) `1/7` `1/7` `1/7` `1/7` `1/7` `1/7` `1/7`
(c) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
(d) –0.1 0.2 0.3 0.4 -0.2 0.1 0.3
(e) `1/14` `2/14` `3/14` `4/14` `5/14` `6/14` `15/14`

A card is selected from a pack of 52 cards.

  1. How many points are there in the sample space?
  2. Calculate the probability that the card is an ace of spades.
  3. Calculate the probability that the card is
    1. an ace
    2. black card.

A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12


Three coins are tossed once. Find the probability of getting

  1. 3 heads
  2. 2 heads
  3. at least 2 heads
  4. at most 2 heads
  5. no head
  6. 3 tails
  7. exactly two tails
  8. no tail
  9. atmost two tails.

4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade?


Two unbiased dice are thrown. Find the probability that the total of the numbers on the dice is greater than 10.

 

A bag contains 5 red, 6 white and 7 black balls. Two balls are drawn at random. What is the probability that both balls are red or both are black?


If a letter is chosen at random from the English alphabet, find the probability that the letter is a consonant .


In a lottery, a person chooses six different numbers at random from 1 to 20, and if these six numbers match with six number already fixed by the lottery committee, he wins the prize. What is the probability of winning the prize in the game?


Which of the cannot be valid assignment of probability for elementary events or outcomes of sample space S =  {w1w2w3w4w5w6w7}:

Elementary events: w1 w2 w3 w4 w5 w6 w7
(iii) 0.7 0.06 0.05 0.04 0.03 0.2 0.1

A box contains 100 bulbs, 20 of which are defective. 10 bulbs are selected for inspection. Find the probability that: all 10 are defective


Two dice are thrown together. The probability that neither they show equal digits nor the sum of their digits is 9 will be


An urn contains twenty white slips of paper numbered from 1 through 20, ten red slips of paper numbered from 1 through 10, forty yellow slips of paper numbered from 1 through 40, and ten blue slips of paper numbered from 1 through 10. If these 80 slips of paper are thoroughly shuffled so that each slip has the same probability of being drawn. Find the probabilities of drawing a slip of paper that is numbered 5, 15, 25, or 35


In a leap year the probability of having 53 Sundays or 53 Mondays is ______.


Three-digit numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that this number has the same digits?


One mapping (function) is selected at random from all the mappings of the set A = {1, 2, 3, ..., n} into itself. The probability that the mapping selected is one to one is ______.


Six new employees, two of whom are married to each other, are to be assigned six desks that are lined up in a row. If the assignment of employees to desks is made randomly, what is the probability that the married couple will have nonadjacent desks?


The accompanying Venn diagram shows three events, A, B, and C, and also the probabilities of the various intersections (for instance, P(A ∩ B) = .07). Determine Probability of exactly one of the three occurs


If the letters of the word ASSASSINATION are arranged at random. Find the probability that all A’s are not coming together


Three numbers are chosen from 1 to 20. Find the probability that they are not consecutive ______.


A single letter is selected at random from the word ‘PROBABILITY’. The probability that it is a vowel is ______.


If the probabilities for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails is ______.


The probability that a person visiting a zoo will see the giraffee is 0.72, the probability that he will see the bears is 0.84 and the probability that he will see both is 0.52.


If A and B are two candidates seeking admission in an engineering College. The probability that A is selected is .5 and the probability that both A and B are selected is at most .3. Is it possible that the probability of B getting selected is 0.7?


The sum of probabilities of two students getting distinction in their final examinations is 1.2


The probability that the home team will win an upcoming football game is 0.77, the probability that it will tie the game is 0.08, and the probability that it will lose the game is ______.


C1
Probability
C2
Written Description
(a) 0.95 (i) An incorrect assignment
(b) 0.02 (ii) No chance of happening
(c) – 0.3 (iii) As much chance of happening as not
(d) 0.5 (iv) Very likely to happen
(e) 0 (v) Very little chance of happening

A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that atleast one will be green?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×