Advertisements
Advertisements
प्रश्न
Shanti Sweets Stall was placing an order for making cardboard boxes for packing their sweets. Two sizes of boxes were required. The bigger of dimensions 25 cm × 20 cm × 5 cm and the smaller of dimensions 15 cm × 12 cm × 5 cm. For all the overlaps, 5% of the total surface area is required extra. If the cost of the cardboard is Rs 4 for 1000 cm2, find the cost of cardboard required for supplying 250 boxes of each kind.
उत्तर
Length (l1) of bigger box = 25 cm
Breadth (b1) of bigger box = 20 cm
Height (h1) of bigger box = 5 cm
Total surface area of bigger box = 2(lb + lh + bh)
= [2(25 × 20 + 25 × 5 + 20 × 5)] cm2
= [2(500 + 125 + 100)] cm2
= 1450 cm2
`"Extra area required for overlapping "= ((1450xx5)/100)cm^2 = 72.5 cm^2`
While considering all overlaps, total surface area of 1 bigger box
= (1450 + 72.5) cm2 =1522.5 cm2
Area of cardboard sheet required for 250 such bigger boxes
= (1522.5 × 250) cm2 = 380625 cm2
Similarly, total surface area of smaller box = [2(15 ×12 + 15 × 5 + 12 × 5] cm2
= [2(180 + 75 + 60)] cm2
= (2 × 315) cm2
= 630 cm2
`"Therefore, extra area required for overlapping "= ((630xx5)/100)cm^2 = 31.5cm^2`
Total surface area of 1 smaller box while considering all overlaps
= (630 + 31.5) cm2 = 661.5 cm2
Area of cardboard sheet required for 250 smaller boxes = (250 × 661.5) cm2
= 165375 cm2
Total cardboard sheet required = (380625 + 165375) cm2
= 546000 cm2
Cost of 1000 cm2 cardboard sheet = Rs 4
Cost of 546000 cm2 cardboard sheet`=((546000xx4)/1000) = "Rs. "2184`
Therefore, the cost of cardboard sheet required for 250 such boxes of each kind will be Rs 2184.
APPEARS IN
संबंधित प्रश्न
The weight of a metal block of size 5 cm by 4 cm by 3 cm is 1 kg. Find the weight of a block of the same metal of size 15 cm by 8 cm by 3 cm.
Find the surface area of a cuboid whose llength = 2 m, breadth = 4 m, height = 5 m .
A cuboid has total surface area of 50 m2 and lateral surface area is 30 m2. Find the area of its base.
Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.
The areas of three adjacent faces of a cuboid are x, y and z. If the volume is V, prove that V2 = xyz.
Find the volume of wood required to make a closed box of external dimensions 80 cm, 75 cm, and 60 cm, the thickness of walls of the box being 2 cm throughout.
Find the height of the cylinder whose radius is 7 cm and the total surface area is 1100 cm2.
A room is 22m long, 15m broad and 6m high. Find the area of its four walls and the cost of painting including doors and windows at the rate of Rs.12per m2.
Three cubes each of side 10 cm are joined end to end. Find the surface area of the resultant figure.