मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

Show that the Normal Component of Electrostatic Field Has a Discontinuity from One Side of a Charged Surface to Another - Physics

Advertisements
Advertisements

प्रश्न

(a) Show that the normal component of electrostatic field has a discontinuity from one side of a charged surface to another given by

`(vec"E"_2 - vec"E"_1).hat"n" = sigma/in_0`

Where `hat"n"` is a unit vector normal to the surface at a point and σ is the surface charge density at that point. (The direction of `hat"n"` is from side 1 to side 2.) Hence show that just outside a conductor, the electric field is σ `hat"n"/in_0`

(b) Show that the tangential component of electrostatic field is continuous from one side of a charged surface to another.

[Hint: For (a), use Gauss’s law. For, (b) use the fact that work done by electrostatic field on a closed loop is zero.]

संख्यात्मक

उत्तर

(a) Electric field on one side of a charged body is E1 and electric field on the other side of the same body is E2. If infinite plane charged body has a uniform thickness, then electric field due to one surface of the charged body is given by,

`vec"E"_1 = -sigma/(2in_0)hat"n"` ..........(1)

Where,

`hat"n"` = Unit vector normal to the surface at a point

σ = Surface charge density at that point

Electric field due to the other surface of the charged body,

`vec"E"_2 = sigma/(2in_0)hat"n"` ........(2)

Electric field at any point due to the two surfaces,

`vec"E"_2 - vec"E"_1 = sigma/(2in_0)hat"n" + sigma/(2in_0)hat"n" = sigma/(in_0)hat"n"`

`(vec"E"_2 - vec"E"_1)hat"n" = sigma/in_0` ......(3)

Since inside a closed conductor, `vec"E"_1` = 0,

∴ `vec"E" = vec"E"_2 = -sigma/(2in_0)hat"n"`

Therefore, the electric field just outside the conductor is `sigma/(in_0)hat"n"`.

(b) When a charged particle is moved from one point to the other on a closed-loop, the work done by the electrostatic field is zero. Hence, the tangential component of the electrostatic field is continuous from one side of a charged surface to the other.

shaalaa.com
Electrostatics of Conductors
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Electrostatic Potential and Capacitance - Exercise [पृष्ठ ८७]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 2 Electrostatic Potential and Capacitance
Exercise | Q 2.16 | पृष्ठ ८७
एनसीईआरटी Physics [English] Class 12
पाठ 2 Electrostatic Potential and Capacitance
Exercise | Q 16 | पृष्ठ ८८

संबंधित प्रश्‍न

A spherical conductor of radius 12 cm has a charge of 1.6 × 10−7 C distributed uniformly on its surface. What is the electric field

  1. inside the sphere
  2. just outside the sphere
  3. at a point 18 cm from the centre of the sphere?

A spherical conducting shell of inner radius r1 and outer radius r2 has a charge Q.

(a) A charge q is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?

(b) Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.


A 4 µF capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged 2 µF capacitors. How much electrostatic energy of the first capacitor is lost in the form of heat and electromagnetic radiation?


Define electrostatic potential at a point. Write its S.I. unit. Three-point charges q1, q2 and q3 are kept respectively at points A, B, and C as shown in the figure, Derive the expression for the electrostatic potential energy of the system.


Fill in the blank.
A point charge is placed at the centre of a hollow conducting sphere of internal radius 'r' and outer radius '2r'. The ratio of the surface charge density of the inner surface to that of the outer surface will be_________.


Electric-field magnitude 'E' at points inside and outside a positively charged spherical conductor having charge Q and a radius R are ______.


If R is the radius of a spherical conductor, Vm the dielectric strength, then the maximum electric-field magnitude to which it can be raised is ______.


The electrostatic potential on the surface of a charged conducting sphere is 100V. Two statements are made in this regard S1 at any point inside the sphere, electric intensity is zero. S2 at any point inside the sphere, the electrostatic potential is 100 V. Which of the following is a correct statement?


There are two metallic spheres of same radii but one is solid and the other is hollow, then ______.

A conductor carries a certain charge. When it is connected to another uncharged conductor of finite capacity, then the energy of the combined system is ______.

Which of the following statement is true?


Which of the following statements is false for a perfect conductor?


Three Charges 2q, -q and -q lie at vertices of a triangle. The value of E and V at centroid of triangle will be ______.


A solid spherical conductor has charge +Q and radius R. It is surrounded by a solid spherical shell with charge -Q, inner radius 2R, and outer radius 3R. Which of the following statements is true?


A test charge q is made to move in the electric field of a point charge Q along two different closed paths (Figure). First path has sections along and perpendicular to lines of electric field. Second path is a rectangular loop of the same area as the first loop. How does the work done compare in the two cases?


Consider a finite insulated, uncharged conductor placed near a finite positively charged conductor. The uncharged body must have a potential:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×