Advertisements
Advertisements
प्रश्न
Show that the given points form a parallelogram:
A(2.5, 3.5), B(10, – 4), C(2.5, – 2.5) and D(– 5, 5)
उत्तर
Let A(2.5, 3.5), B(10, – 4), C(2.5, – 2.5) and D(– 5, 5) are the vertices of a parallelogram.
Slope of a line = `(y_2 - y_1)/(x_2 - x_1)`
Slope of AB = `(-4 - 3.5)/(10 - 2.5) = (-7.5)/(7.5)` = – 1
Slope of CD = `(5 + 2.5)/(-5 - 2.5) = (7.5)/(-7.5)` = – 1
Slope of AB = Slope of CD = – 1
∴ AB is Parallel to CD ...(1)
Slope of BC = `(-4 + 2.5)/(10 - 2.5) = (-1.5)/(7.5) = (-15)/75 = -1/5`
Slope of AD = `(5 - 3.5)/(-5 - 2.5) = 1.5/-7.5 = 15/(-75) = -1/5`
Slope of BC = Slope of AD
∴ BC is parallel to AD
From (1) and (2) we get ABCD is a parallelogram.
APPEARS IN
संबंधित प्रश्न
What is the slope of a line whose inclination with positive direction of x-axis is 90°
What is the slope of a line whose inclination with positive direction of x-axis is 0°
Find the slope of a line joining the points
`(5, sqrt(5))` with the origin
Show that the given points form a right angled triangle and check whether they satisfy Pythagoras theorem
A(1, – 4), B(2, – 3) and C(4, – 7)
If the points A(2, 2), B(– 2, – 3), C(1, – 3) and D(x, y) form a parallelogram then find the value of x and y.
Let A(3, – 4), B(9, – 4), C(5, – 7) and D(7, – 7). Show that ABCD is a trapezium.
A quadrilateral has vertices at A(– 4, – 2), B(5, – 1), C(6, 5) and D(– 7, 6). Show that the mid-points of its sides form a parallelogram.
The slope of the line joining (12, 3), (4, a) is `1/8`. The value of ‘a’ is
The slope of the line which is perpendicular to a line joining the points (0, 0) and (− 8, 8) is
If slope of the line PQ is `1/sqrt(3)` then slope of the perpendicular bisector of PQ is