मराठी

सिद्ध कीजिए कि किसी वृत्त की एक जीवा के सिरों पर खींची गई स्पर्श रेखाएँ उस जीवा से बराबर कोण बनाती हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सिद्ध कीजिए कि किसी वृत्त की एक जीवा के सिरों पर खींची गई स्पर्श रेखाएँ उस जीवा से बराबर कोण बनाती हैं।

बेरीज

उत्तर

मान लीजिए QR केंद्र O वाले वृत्त में एक जीवा है और ∠1 और ∠2 क्रमशः जीवा के साथ बिंदु R और Q पर स्पर्श रेखा द्वारा बनाए गए कोण हैं।

सिद्ध करने के लिए: ∠1 = ∠2


मान लीजिए P वृत्त पर एक अन्य बिंदु है, फिर, PQ और PR को मिलाएँ।

चूंकि, बिंदु Q पर, एक स्पर्श रेखा है।

∠RPQ = ∠2 ...[एकांतर खंडों में कोण बराबर होते हैं।] [समीकरण 1]

चूंकि, बिंदु R पर, एक स्पर्श रेखा है।

∠RPQ = ∠1 ...[एकांतर खंडों में कोण बराबर होते हैं।] [समीकरण 2]

समीकरण 1 और समीकरण 2 से

∠1 = ∠2

अत: सिद्ध हुआ।

shaalaa.com
वृत्त की स्पर्श रेखा
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: वृत्त - प्रश्नावली 9.3 [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 9 वृत्त
प्रश्नावली 9.3 | Q 9. | पृष्ठ ११०

संबंधित प्रश्‍न

आकृति में, AT केंद्र O वाले वृत्त पर एक स्पर्श रेखा इस प्रकार है कि OT = 4 cm और ∠OTA = 30° है। तब, AT बराबर ______ है।


आकृति में, यदि PQR केंद्र O वाले वृत्त की बिंदु Q पर स्पर्श रेखा है, AB रेखा PR के समांतर एक जीवा है तथा ∠BQR = 70° है, तो ∠AQB बराबर ______ है।


उपरोक्त प्रश्न 5 में, यदि दोनों वृत्तों की त्रिज्याएँ बराबर हों, तो सिद्ध कीजिए कि AB = CD है।


एक वृत्त की जीवा PQ, बिंदु R पर इस वृत्त की स्पर्श रेखा के समांतर है। सिद्ध कीजिए कि बिंदु R चाप PRQ को समद्विभाजित करता है। 


सिद्ध कीजिए कि किसी वृत्त का एक व्यास AB उन सभी जीवाओं को समद्विभाजित करता है, जो बिंदु A से खींची गई वृत्त की स्पर्श रेखा के समांतर हैं।


यदि केंद्र O वाले वृत्त की AB एक जीवा है, AOC एक व्यास है तथा AT बिंदु A पर खींची गई स्पर्श रेखा है, जैसा कि आकृति में दर्शाया गया है। सिद्ध कीजिए कि ∠BAT = ∠ACB है।


सिद्ध कीजिए कि किसी वृत्त के एक चाप के मध्य-बिंदु पर वृत्त की स्पर्श रेखा उस चाप के सिरों को मिलाने वाली जीवा के समांतर होती है। 


आकृति में, केंद्रों O और O' वाले दो वृत्तों की उभयनिष्ठ स्पर्श रेखाएँ AB और CD परस्पर E पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि बिंदु O, E, O' संरेखी हैं।


किसी वृत्त की बिंदु C पर खींची गई स्पर्श रेखा और व्यास AB बढ़ाने पर बिंदु P पर प्रतिच्छेद करते हैं। यदि ∠PCA = 110° है, तो ∠CBA ज्ञात कीजिए।  


यदि त्रिज्या 9 cm वाले एक वृत्त के अंतर्गत एक समद्विबाहु त्रिभुज ABC खींचा गया है, जिसमें AB = AC = 6 cm है, तो उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×