Advertisements
Advertisements
प्रश्न
Simplify the following:
x2 − 3x + 5 − \[\frac{1}{2}\] (3x2 − 5x + 7)
उत्तर
\[ x^2 - 3x + 5 - \frac{1}{2}\left( 3 x^2 - 5x + 7 \right)\]
\[ = x^2 - 3x + 5 - \frac{3 x^2}{2} + \frac{5x}{2} - \frac{7}{2}\]
\[ = x^2 - \frac{3 x^2}{2} - 3x + \frac{5x}{2} + 5 - \frac{7}{2} (\text { Collecting like terms })\]
\[ = \left( \frac{1 - 3}{2} \right) x^2 + \left( \frac{- 3 + 5}{2} \right)x + \left( \frac{10 - 7}{2} \right)\]
\[ = - \frac{x^2}{2} - \frac{x}{2} + \frac{3}{2}\]
Thus, the answer is \[- \frac{x^2}{2} - \frac{x}{2} + \frac{3}{2}\].
APPEARS IN
संबंधित प्रश्न
State whether a given pair of term is of like or unlike term.
12xz, 12x2z2
Take away:
\[\frac{7}{4} x^3 + \frac{3}{5} x^2 + \frac{1}{2}x + \frac{9}{2}\text { from } \frac{7}{2} - \frac{x}{3} - \frac{x^2}{5}\]
Simplify the following:
\[\frac{11}{2} x^2 y - \frac{9}{4}x y^2 + \frac{1}{4}xy - \frac{1}{14} y^2 x + \frac{1}{15}y x^2 + \frac{1}{2}xy\]
In the polynomial, given below, separate the like terms :
y2z3, xy2z3, −5x2yz, −4y2z3, −8xz3y2, 3x2yz and 2z3y2
If the area of a square is 36x4y2 then, its side is ____________
In an expression, we can add or subtract only ________
Which of the following is a binomial?
The product of two terms with unlike signs is a ______ term.
Which of the following is a pair of like terms?
Like terms in the expression n(n + 1) + 6(n – 1) are ______ and ______.