मराठी

Solve Each of the Following Systems of Equations by the Method of Cross-multiplication : Mx – My = M2 + N2 X + Y = 2m - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following systems of equations by the method of cross-multiplication :

mx – my = m2 + n2

x + y = 2m

उत्तर

The given system of equations may be written as

`mx - ny - (m^2 + n^2) = 0`

`x + y - 2m = 0

Here

`a_1 = m, b_1 = -n, c_1 = -(n^2 + n^2)`

`a_2 = 1, b_2 = 1, c_2 = -2m`

By cross multiplication, we have

`x/(2mn + (m^2 + n^2)) = (-y)/(-2m^2 + (m^2 + n^2)) = 1/(m + n)`

`=> x/(2mn + m^2 + n^2) = (-y)/(-m^2 + n^2) = 1/(m + n)`

`=> x/(m + n)^2 = (-y)/(-m^2 + n^2) = 1/(m + n)`

Now

`x/(m + n)^2 = 1/(m + n)`

`=> x = (m + n^2)/(m + n)`

=> x = m + n

And

`(-y)/(-m^2 + n^2)  = 1/(m + n)`

`=> -y = (-m^2 + n^2)/(n + n)`

`=> y = (m^2 - n^2)/(m + n)`

`=> y = ((m - n)(m + n))/(m + n)`

=> y = m - n

Hence, x = m + n, y = m - n is the solution of the given system of equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Pair of Linear Equations in Two Variables - Exercise 3.4 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 3 Pair of Linear Equations in Two Variables
Exercise 3.4 | Q 26 | पृष्ठ ५८

संबंधित प्रश्‍न

Solve the following system of equations by cross-multiplication method x + y = a – b; ax – by = a2 + b2


Solve the following system of equations by cross-multiplications method.

`a(x + y) + b (x – y) = a^2 – ab + b^2`

`a(x + y) – b (x – y) = a^2 + ab + b^2`


Form the pair of linear equations in the following problems and find their solutions (if they exist) by any algebraic met

Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?


Solve the following systems of equations:

4u + 3y = 8

`6u - 4y = -5`


Solve each of the following systems of equations by the method of cross-multiplication :

`5/(x + y) - 2/(x - y) = -1`

`15/(x + y) + 7/(x - y) = 10`

where `x != 0 and y != 0`


Solve each of the following systems of equations by the method of cross-multiplication :

`(ax)/b - (by)/a = a + b`

ax - by = 2ab


Find the values of x and y in the following rectangle [see figure].


Solve the following pair of equations:

`(2xy)/(x + y) = 3/2, (xy)/(2x - y) = (-3)/10,  x + y ≠ 0, 2x - y ≠ 0`


Find the solution of the pair of equations `x/10 + y/5 - 1` = 0 and `x/8 + y/6` = 15. Hence, find λ, if y = λx + 5.


For what values of k will the following pair of linear equations have infinitely many solutions?

kx + 3y – (k – 3) = 0

12x + ky – k = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×