Advertisements
Advertisements
प्रश्न
Solve the following equation and also check your result:
[(2x + 3) + (x + 5)]2 + [(2x + 3) − (x + 5)]2 = 10x2 + 92
उत्तर
\[[(2x + 3) + (x + 5) ]^2 + [(2x + 3) - (x + 5) ]^2 = 10 x^2 + 92\]
\[\text{ or }(3x + 8 )^2 + (x - 2 )^2 = 10 x^2 + 92\]
\[\text{ or }9 x^2 + 48x + 64 + x^2 - 4x + 4 = 10 x^2 + 92 [ (a + b )^2 = a^2 + b^2 + 2ab and (a - b )^2 = a^2 + b^2 - 2ab ]\]
\[\text{ or }10 x^2 - 10 x^2 + 44x = 92 - 68\]
\[\text{ or }x = \frac{24}{44}\]
\[\text{ or }x = \frac{6}{11}\]
\[\text{ Thus, }x = \frac{6}{11}\text{ is the solution of the given equation . }\]
\[\text{ Check: }\]
\[\text{ Substituting }x = \frac{6}{11}\text{ in the given equation, we get: }\]
\[\text{ L . H . S . }= \left[ \left( 2 \times \frac{6}{11} + 3 \right) + \left( \frac{6}{11} + 5 \right) \right]^2 + \left[ \left( 2 \times \frac{6}{11} + 3 \right) - \left( \frac{6}{11} + 5 \right) \right]^2 \]
\[ = \left[ \left( \frac{45}{11} \right) + \left( \frac{61}{11} \right) \right]^2 + \left[ \left( \frac{45}{11} \right) - \left( \frac{61}{11} \right) \right]^2 \]
\[ = \left( \frac{106}{11} \right)^2 + \left( \frac{- 16}{11} \right)^2 \]
\[ = \frac{11492}{121}\]
\[\text{ R . H . S . }= 10 \times \left( \frac{6}{11} \right)^2 + 92 = \frac{360}{121} + 92 = \frac{11492}{121}\]
\[ \therefore\text{ L . H . S . = R . H . S . for }x = \frac{6}{11}\]
APPEARS IN
संबंधित प्रश्न
Solve each of the following equation and also check your result in each case:
\[\frac{(1 - 2x)}{7} - \frac{(2 - 3x)}{8} = \frac{3}{2} + \frac{x}{4}\]
Solve the following equation and verify your answer:
Solve: a + 8.9 = - 12.6
Solve: x + 2 = `1 1/4`
Solve: m - 2 = - 5
Solve: 2x + 5 = 17
Solve: 6y + 4 = - 4.4
Solve: - 8m -2 = - 10
Solve: (5x - 3) 4 = 3
Which of the following is a linear expression?