Advertisements
Advertisements
प्रश्न
Solve the following equation and verify your answer:
उत्तर
\[\frac{(x + 2)(2x - 3) - 2 x^2 + 6}{x - 5} = 2\]
\[\text{ or }\frac{2 x^2 + x - 6 - 2 x^2 + 6}{x - 5} = 2\]
\[\text{ or }\frac{x}{x - 5} = 2\]
\[\text{ or }2x - 10 = x [\text{ After cross multiplication }]\]
\[\text{ or }2x - x = 10\]
\[\text{ or }x = 10\]
\[\text{ Thus, }x = 10\text{ is the solution of the given equation . }\]
\[\text{ Check: }\]
\[\text{ Substituting }x = 10 \text{in the given equation, we get: } \]
\[\text{ L . H . S . }= \frac{(10 + 2)(2 \times 10 - 3) - 2 \times {10}^2 + 6}{10 - 5} = \frac{12 \times 17 - 200 + 6}{5} = \frac{10}{5} = 2\]
\[\text{ R . H . S . }= 2\]
\[ \therefore \text{ L . H . S . = R . H . S . for }x = 10.\]
APPEARS IN
संबंधित प्रश्न
Solve the following equation and also verify your solution:
(x + 2)(x + 3) + (x − 3)(x − 2) − 2x(x + 1) = 0
Solve the following equation and also check your result:
\[\frac{2x + 5}{3} = 3x - 10\]
Solve: m - 2 = - 5
Solve: `"m"/6 = 2 1/2`
Solve: 2x + 5 = 17
Solve: `"z"/7 + 1 = 2 1/2`
Solve: 4x - x + 5 = 8
Solve: 3.5x - 9 - 3 = x + 1
Solve: 5x − 14 = x − (24 + 4x)
Solve: `"z"/3 - 1 = - 5`