Advertisements
Advertisements
प्रश्न
Solve the following equation and verify your answer:
उत्तर
\[\frac{x^2 - (x + 1)(x + 2)}{5x + 1} = 6\]
\[\text{ or }\frac{x^2 - x^2 - 2x - x - 2}{5x + 1} = 6\]
\[\text{ or }\frac{- 3x - 2}{5x + 1} = 6\]
\[\text{ or }30x + 6 = - 3x - 2 [\text{ After cross multiplication }]\]
\[\text{ or }30x + 3x = - 2 - 6\]
\[\text{ or }33x = -8 \text{ or }x=\frac{- 8}{33}\]
\[\text{ Thus, }x = \frac{- 8}{33}\text{ is the solution of the given equation . }\]
\[\text{ Check: }\]
\[\text{ Substituting }x = \frac{- 8}{33}\text{ in the given equation, we get: }\]
\[\text{ L . H . S .} = \frac{(\frac{- 8}{33} )^2 - (\frac{- 8}{33} + 1)(\frac{- 8}{33} + 2)}{5(\frac{- 8}{33}) + 1} = \frac{\frac{64}{1089} - \frac{25}{33} \times \frac{58}{33}}{\frac{- 40}{33} + 1} = \frac{\frac{64}{1089} - \frac{1450}{1089}}{\frac{- 7}{33}} = \frac{\frac{- 1386}{1089}}{\frac{- 7}{33}} = \frac{42}{7} =\text{ R . H . S . }= 6\]
\[ \therefore\text{ L . H . S . = R . H . S . for }x = \frac{- 8}{33}\]
APPEARS IN
संबंधित प्रश्न
Solve the following equation and also check your result:
\[\frac{1}{2}x + 7x - 6 = 7x + \frac{1}{4}\]
Solve: x + 2 = `1 1/4`
Solve: `"y"/3` = - 2
Solve: 2.4x - 3 = 4.2
Solve: `"a"/2.4 - 5 = 2.4`
Solve: `"b"/1.6 + 3 = - 2.5`
Solve: 3a = – 2.1
Solve: 3x + 2 = -2.2
Solve: (5x - 3) 4 = 3
One fourth of a number added to one- sixth of itself is 15. Find the number.