Advertisements
Advertisements
प्रश्न
Solve the equation:
`6(x^2 + (1)/x^2) -25 (x - 1/x) + 12 = 0`.
उत्तर
Given equation
`6(x^2 + (1)/x^2) -25 (x - 1/x) + 12 = 0`
Put x `-(1)/x = y, "squaring" (x - 1/x)^2 = y^2`
⇒ `x^2 + (1)/x^2 - 2 = y^2`
⇒ `x^2 + (1)/x^2 = y^2 + 2`
Now, given equation becomes
6(y2 + 2) - 25y + 12 = 0
⇒ 6y2 + 12 - 25 + 12 = 0
⇒ 6y2 - 25y + 24 = 0
⇒ 6y2 - 16y - 9y + 24 = 0
⇒ 2y(3y - 8) - 3(3y - 8) = 0
⇒ (3y - 8) (2y - 3) = 0
⇒ 3y - 8 = 0 or 2y - 3 = 0
⇒ 3y = 8 or 2y = 3
⇒ y = `(8)/(3)` or y = `(3)/(2)`
But `x - (1)/x = y`
∴ `x - (1)/x = (8)/(3)`
⇒ `(x^2 - 1)/x = (8)/(3)`
⇒ 3x2 - 3 = 8x
⇒ 3x2 - 8x - 3 = 0
⇒ 3x2 - 9x + x - 3 = 0
⇒ 3x(x - 3) + 1(x - 3) = 0
⇒ (x - 3) (3x + 1) = 0
⇒ x - 3 = 0 or 3x + 1 = 0
⇒ x = 3 or x = `(-1)/(3)`
or
`x - (1)/x = (3)/(2)`
⇒ `(x^2 - 1)/x = (3)/(2)`
⇒ 2x2 - 2 = 3x
⇒ 2x2 - 3x - 2 = 0
⇒ 2x2 - 4x + x - 2 = 0
⇒ 2x(x - 2) + 1(x - 2) = 0
⇒ (x - 2) (2x + 1) = 0
⇒ x - 2 = 0 or 2x + 1 = 0
⇒ x = 2 or x = `(-1)/(2)`
Hence, x = 3, `(-1)/(3), 2 and (-1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Solve the equation `4/x-3=5/(2x+3); xne0,-3/2` for x .
The product of Ramu's age (in years) five years ago and his age (in years) nice years later is 15. Determine Ramu's present age.
The perimeter of a rectangular field is 82 m and its area is 400 m2. Find the breadth of the rectangle.
If a and b are roots of the equation x2 + ax + b = 0, then a + b =
Solve the following quadratic equation using formula method only
x2 - 7x - 5 = 0
Solve the following equation by factorization
`(2)/(x^2) - (5)/x + 2 = 0, x ≠ 0`
Find two consecutive natural numbers such that the sum of their squares is 61.
If the product of two positive consecutive even integers is 288, find the integers.
Is 0.2 a root of the equation x2 – 0.4 = 0? Justify
Solve the quadratic equation: x2 – 2ax + (a2 – b2) = 0 for x.