Advertisements
Advertisements
Question
Solve the equation:
`6(x^2 + (1)/x^2) -25 (x - 1/x) + 12 = 0`.
Solution
Given equation
`6(x^2 + (1)/x^2) -25 (x - 1/x) + 12 = 0`
Put x `-(1)/x = y, "squaring" (x - 1/x)^2 = y^2`
⇒ `x^2 + (1)/x^2 - 2 = y^2`
⇒ `x^2 + (1)/x^2 = y^2 + 2`
Now, given equation becomes
6(y2 + 2) - 25y + 12 = 0
⇒ 6y2 + 12 - 25 + 12 = 0
⇒ 6y2 - 25y + 24 = 0
⇒ 6y2 - 16y - 9y + 24 = 0
⇒ 2y(3y - 8) - 3(3y - 8) = 0
⇒ (3y - 8) (2y - 3) = 0
⇒ 3y - 8 = 0 or 2y - 3 = 0
⇒ 3y = 8 or 2y = 3
⇒ y = `(8)/(3)` or y = `(3)/(2)`
But `x - (1)/x = y`
∴ `x - (1)/x = (8)/(3)`
⇒ `(x^2 - 1)/x = (8)/(3)`
⇒ 3x2 - 3 = 8x
⇒ 3x2 - 8x - 3 = 0
⇒ 3x2 - 9x + x - 3 = 0
⇒ 3x(x - 3) + 1(x - 3) = 0
⇒ (x - 3) (3x + 1) = 0
⇒ x - 3 = 0 or 3x + 1 = 0
⇒ x = 3 or x = `(-1)/(3)`
or
`x - (1)/x = (3)/(2)`
⇒ `(x^2 - 1)/x = (3)/(2)`
⇒ 2x2 - 2 = 3x
⇒ 2x2 - 3x - 2 = 0
⇒ 2x2 - 4x + x - 2 = 0
⇒ 2x(x - 2) + 1(x - 2) = 0
⇒ (x - 2) (2x + 1) = 0
⇒ x - 2 = 0 or 2x + 1 = 0
⇒ x = 2 or x = `(-1)/(2)`
Hence, x = 3, `(-1)/(3), 2 and (-1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Find the roots of the following quadratic equation by factorisation:
2x2 + x – 6 = 0
A girls is twice as old as her sister. Four years hence, the product of their ages (in years) will be 160. Find their present ages.
A dealer sells an article for Rs. 24 and gains as much percent as the cost price of the article. Find the cost price of the article.
Solve equation using factorisation method:
`6/x = 1 + x`
Solve equation using factorisation method:
`4/(x + 2) - 1/(x + 3) = 4/(2x + 1)`
Solve the following quadratic equation using factorization method:
`"x"^2-11"x"+24=0`
Solve the following equation by factorization
(x – 4)2 + 52 = 132
Solve the following equation by factorisation :
x2 + 6x – 16 = 0
Complete the following activity to solve the given quadratic equation by factorization method.
Activity: x2 + 8x – 20 = 0
x2 + ( __ ) – 2x – 20 = 0
x (x + 10) – ( __ ) (x + 10) = 0
(x + 10) ( ____ ) = 0
x = ___ or x = 2
Find the roots of the following quadratic equation by the factorisation method:
`2/5x^2 - x - 3/5 = 0`