Advertisements
Advertisements
Question
Find the roots of the following quadratic equation by factorisation:
2x2 + x – 6 = 0
Solution
2x2 + x – 6
= 2x2 + 4x - 3x - 6
= 2x(x + 2) - 3(x + 2)
= (x + 2)(2x - 3)
Roots of this equation are the values for which (x + 2)(2x - 3) = 0
⇒ x = -2 or x =
APPEARS IN
RELATED QUESTIONS
Solve the equation
Solve for x :
Solve the following quadratic equations by factorization:
Solve the following quadratic equations by factorization:
In a class test, the sum of the marks obtained by P in Mathematics and science is 28. Had he got 3 marks more in mathematics and 4 marks less in Science. The product of his marks would have been 180. Find his marks in two subjects.
For the equation given below, find the value of ‘m’ so that the equation has equal roots. Also find the solution of the equation:
3x2 + 12x + (m + 7) = 0
Solve each of the following equations by factorization:
x(x – 5) = 24
Solve the following quadratic equation by factorisation.
Solve the following equation: (x-8)(x+6) = 0
Solve equation using factorisation method:
Let ∆ ABC ∽ ∆ DEF and their areas be respectively, 64 cm2 and 121 cm2. If EF = 15⋅4 cm, find BC.
An aeroplane travelled a distance of 400 km at an average speed of x km/hr. On the return journey the speed was increased by 40 km/hr. Write down the expression for the time taken for
The outward journey
An aeroplane travelled a distance of 400 km at an average speed of x km/hr. On the return journey the speed was increased by 40 km/hr. Write down the expression for the time taken for
the return Journey. If the return journey took 30 minutes less than the onward journey write down an equation in x and find its value.
Solve the following by reducing them to quadratic form:
Solve the following equation by factorization
Solve the following equation by factorization
The perimeter of a rectangular plot is 180 m and its area is 1800 m2. Take the length of the plot as x m. Use the perimeter 180 m to write the value of the breadth in terms of x. Use the values of length, breadth and the area to write an equation in x. Solve the equation to calculate the length and breadth of the plot.
A shopkeeper buys a certain number of books for Rs 960. If the cost per book was Rs 8 less, the number of books that could be bought for Rs 960 would be 4 more. Taking the original cost of each book to be Rs x, write an equation in x and solve it to find the original cost of each book.
Solve the following equation by factorisation :
3x2 + 11x + 10 = 0
Find the roots of the following quadratic equation by the factorisation method: