Advertisements
Advertisements
Question
A shopkeeper buys a certain number of books for Rs 960. If the cost per book was Rs 8 less, the number of books that could be bought for Rs 960 would be 4 more. Taking the original cost of each book to be Rs x, write an equation in x and solve it to find the original cost of each book.
Solution
Let original cost = Rs x
No. of books bought = `(960)/x`
New cost of books = Rs (x – 8)
∴ No. of books bought = `(960)/(x - 8)`
If no. of books bought is 4 more then cost = `(960)/x + 4`
∴ According to conditions,
`(960)/(x - 8) - (960)/x` = 4
⇒ `960((1)/(x - 8) - (1)/x)` = 4
⇒ `(x - (x - 8))/(x(x - 8)) = (4)/(960)`
⇒ `(x - x + 8)/(x^2 - 8x) = (4)/(960)`
⇒ `(8)/(x^2 - 8x) = (1)/(960)`
⇒ x2 - 8x = 8 x 240
⇒ x2 - 8x - 1920 = 0
x = `(-(-8)±sqrt((-8)^2 -4(1)(-1920)))/(2)`
= `(8±sqrt(64 + 7680))/(2)`
= `(8 ±sqrt(7744))/(2)`
= `(8 ± 88)/(2)`
= `(8 + 88)/(2), (8 - 88)/(2)`
= `(96)/(2), (-80)/(2)`
= 48, -40 ...(rejecting)
∴ cost of book = ₹48.
APPEARS IN
RELATED QUESTIONS
Solve the following quadratic equation for x: x2 – 2ax – (4b2 – a2) = 0
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects
Solve the following quadratic equations by factorization:
6x2 + 11x + 3 = 0
Solve the following quadratic equations by factorization:
`x^2-(sqrt3+1)x+sqrt3=0`
Solve the following quadratic equations by factorization:
`(x+3)/(x+2)=(3x-7)/(2x-3)`
Solve the following quadratic equations by factorization:
`1/((x-1)(x-2))+1/((x-2)(x-3))+1/((x-3)(x-4))=1/6`
Write the set of value of k for which the quadratic equations has 2x2 + kx − 8 = 0 has real roots.
Solve the following equation: c
The sum of the square of 2 consecutive odd positive integers is 290.Find them.
Let ∆ ABC ∽ ∆ DEF and their areas be respectively, 64 cm2 and 121 cm2. If EF = 15⋅4 cm, find BC.