Advertisements
Advertisements
प्रश्न
A shopkeeper buys a certain number of books for Rs 960. If the cost per book was Rs 8 less, the number of books that could be bought for Rs 960 would be 4 more. Taking the original cost of each book to be Rs x, write an equation in x and solve it to find the original cost of each book.
उत्तर
Let original cost = Rs x
No. of books bought = `(960)/x`
New cost of books = Rs (x – 8)
∴ No. of books bought = `(960)/(x - 8)`
If no. of books bought is 4 more then cost = `(960)/x + 4`
∴ According to conditions,
`(960)/(x - 8) - (960)/x` = 4
⇒ `960((1)/(x - 8) - (1)/x)` = 4
⇒ `(x - (x - 8))/(x(x - 8)) = (4)/(960)`
⇒ `(x - x + 8)/(x^2 - 8x) = (4)/(960)`
⇒ `(8)/(x^2 - 8x) = (1)/(960)`
⇒ x2 - 8x = 8 x 240
⇒ x2 - 8x - 1920 = 0
x = `(-(-8)±sqrt((-8)^2 -4(1)(-1920)))/(2)`
= `(8±sqrt(64 + 7680))/(2)`
= `(8 ±sqrt(7744))/(2)`
= `(8 ± 88)/(2)`
= `(8 + 88)/(2), (8 - 88)/(2)`
= `(96)/(2), (-80)/(2)`
= 48, -40 ...(rejecting)
∴ cost of book = ₹48.
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
`(2x)/(x-4)+(2x-5)/(x-3)=25/3`
Sum of the areas of two squares is 640 m2. If the difference of their perimeters is 64 m. Find the sides of the two squares.
Solve the following quadratic equations by factorization:
(x + 1) (2x + 8) = (x+7) (x+3)
The sum of two natural numbers is 15 and the sum of their reciprocals is `3/10`. Find the numbers.
Solve for x: `3x^2-2sqrt3x+2=0`
If x = 1 is a common root of ax2 + ax + 2 = 0 and x2 + x + b = 0, then, ab =
Three consecutive natural numbers are such that the square of the first increased by the product of other two gives 154. Find the numbers.
The hypotenuse of a right-angled triangle is 17cm. If the smaller side is multiplied by 5 and the larger side is doubled, the new hypotenuse will be 50 cm. Find the length of each side of the triangle.
A shopkeeper purchases a certain number of books for Rs. 960. If the cost per book was Rs. 8 less, the number of books that could be purchased for Rs. 960 would be 4 more. Write an equation, taking the original cost of each book to be Rs. x, and Solve it to find the original cost of the books.
A rectangle of area 105 cm² has its length equal to x cm. Write down its breadth in terms of x. Given that the perimeter is 44 cm, write down an equation in x and solve it to determine the dimensions of the rectangle.