Advertisements
Advertisements
प्रश्न
Solve the following equation.
`[(4x +1)^2 + ( 2x + 3)^2]/[4x^2 + 12x + 9] = 61/36`
उत्तर
` [(4x +1)^2 + ( 2x + 3)^2]/[4x^2 + 12x + 9] = 61/36`
⇒ ` [(4x +1)^2 + ( 2x + 3)^2]/[(2x)^2 + 2 (2x) (3) + 3^2] = 61/36`
⇒ ` ((4x +1)^2 + ( 2x + 3)^2)/(2x + 3)^2 = 61/36`
Applying dividendo, we get
⇒ `{(4x +1)^2 + ( 2x + 3)^2 - (2x + 3)^2}/( 2x + 3)^2 = (61 - 36)/36`
⇒ `[(4x + 1)^2]/[( 2x + 3 )^2] = 25/36`
Taking square root on both sides, we get
⇒ `( 4x + 1)/(2x + 3) = sqrt (25/36) = 5/6`
⇒ `(4x + 1)/(2x + 3) = 5/6`
⇒ `6(4x + 1) + 5(2x + 3)`
⇒ `24x + 6 = 10x + 15`
⇒ `24x - 10x = 15 - 6`
⇒ `14x = 9`
⇒ `x =9/14`
Thus, the solution of the given equation is x = `9/14`.
APPEARS IN
संबंधित प्रश्न
Solve the following equation.
`(x^2 + 12x - 20)/(3x - 5) = (x^2 + 8x + 12)/(2x + 3)`
Solve the following equation.
`[10x^2 + 15x + 63]/[5x^2 - 25x + 12] = (2x + 3)/( x -5)`
Solve the following equation.
`[( 2x + 1)^2 + (2x - 1)^2]/[(2x + 1)^2 - (2x - 1)^2] = 17/8`
Solve the following equation.
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Solve the following equation.
`[(3x - 4)^3 - ( x + 1)^3]/[( 3x - 4)^3 + ( x + 1)^3] = 61/189`