Advertisements
Advertisements
प्रश्न
Solve the following equation.
`(x^2 + 12x - 20)/(3x - 5) = (x^2 + 8x + 12)/(2x + 3)`
उत्तर
`(x^2 + 12x -20)/( 3x - 5 ) = (x^2 + 8x + 12)/( 2x + 3 )`
Multiplying both sides by `1/4`, we get
`(x^2 + 12x -20)/( 12x - 20 ) = (x^2 + 8x + 12)/( 8x + 12 )`
Using dividendo, we get
`[(x^2 + 12x -20) - ( 12x - 20 )]/( 12x - 20 ) = [(x^2 + 8x + 12) - ( 8x + 12 )]/ ( 8x + 12 )`
⇒ `[x^2 + 12x -20 - 12x + 20 ]/( 12x - 20 ) = [x^2 + 8x + 12 - 8x - 12 ]/ ( 8x + 12 )`
⇒ `x^2/( 12x - 20 ) = x^2/ ( 8x + 12 )`
This equation is true for x = 0.
Therefore, x = 0 is a solution of the given equation.
If x ≠ 0, then x2 ≠ 0.
Dividing both sides by x2, we get
`1/(12x - 20)= 1/(8x + 12)`
⇒ 12x - 20 = 8x + 12
⇒ 12x - 8x = 20 + 12
⇒ 4x = 32
⇒ x = 8
Thus, the solutions of the given equation are x = 0 and x = 8.
APPEARS IN
संबंधित प्रश्न
Solve the following equation.
`[10x^2 + 15x + 63]/[5x^2 - 25x + 12] = (2x + 3)/( x -5)`
Solve the following equation.
`[( 2x + 1)^2 + (2x - 1)^2]/[(2x + 1)^2 - (2x - 1)^2] = 17/8`
Solve the following equation.
`[sqrt( 4x + 1) + sqrt( x + 3 )]/[sqrt( 4x + 1 ) - sqrt( x+3 )]=4/1`
Solve the following equation.
`[(4x +1)^2 + ( 2x + 3)^2]/[4x^2 + 12x + 9] = 61/36`
Solve the following equation.
`[(3x - 4)^3 - ( x + 1)^3]/[( 3x - 4)^3 + ( x + 1)^3] = 61/189`