Advertisements
Advertisements
प्रश्न
Solve the following equation by factorisation :
`sqrt(3x^2 - 2x - 1) = 2x - 2`
उत्तर
`sqrt(3x^2 - 2x - 1) = 2x - 2`
Squaring both sides
3x2 - 2x – 1 = (2x - 2)2
⇒ 3x2 – 2x – 1 = 4x2 – 8x + 4
⇒ 4x2 – 8x + 4 – 3x2 + 2x + 1 = 0
⇒ x2 – 6x + 5 = 0
⇒ x2 – 5x – x + 5 = 0
⇒ x(x – 5) –1(x – 5) = 0
⇒ (x – 5)(x – 1) = 0
Either x – 5 = 0,
then x = 5
or
x – 1 = 0,
then x = 1
Check :
(i) If x = 5, then
L.H.S. = `sqrt(3x^2 - 2x - 1)`
= `sqrt(3 xx (5)^2 - 2 xx 5 - 1)`
= `sqrt(3 xx 25 - 10 - 1)`
= `sqrt(75 - 10 - 1)`
= `sqrt(64)`
= 8
R.H.S. = 2x – 2
= 2 x 5 – 2
= 10 – 2
= 8
∵ L.H.S. = R.H.S.
∴ x = 5 is a root
(ii) If x = 1, then
L.H.S. = `sqrt(3x^2 - 2x - 1)`
= `sqrt(3(1)^2 - 2(1) - 1)`
= `sqrt(3 xx 1 - 2 - 1)`
= `sqrt(3 - 2 - 1)`
= 0
R.H.S. = 2x – 2
= 2 x 1 – 2
= 2 – 2
= 0
∵ L.H.S. = R.H.S.
∴ x = 1 is also its root
Hence x = 5, 1.
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
`(2x)/(x-4)+(2x-5)/(x-3)=25/3`
Solve the following quadratic equations by factorization:
`x^2+(a+1/a)x+1=0`
A two digits number is such that the product of the digits is 12. When 36 is added to the number, the digits inter change their places determine the number.
For the equation given below, find the value of ‘m’ so that the equation has equal roots. Also, find the solution of the equation:
x2 – (m + 2)x + (m + 5) = 0
Solve the following quadratic equations by factorization:
`(x + 3)^2 – 4(x + 3) – 5 = 0 `
Solve the following quadratic equations by factorization: \[\frac{3}{x + 1} + \frac{4}{x - 1} = \frac{29}{4x - 1}; x \neq 1, - 1, \frac{1}{4}\]
A two digit number is such that its product of its digit is 18. When 63 is subtracted from the number, the digits interchange their places. Find the number.
Solve the following equation by factorization.
a2x2 + 2ax + 1 = 0, a ≠ 0
Solve the following equation by factorisation :
x(x + 1) + (x + 2)(x + 3) = 42
The polynomial equation x(x + 1) + 8 = (x + 2) (x – 2) is: