Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
`sqrt(3)x^2 + 10x - 8sqrt(3)` = 0
उत्तर
`sqrt(3)x^2 + 10x - 8sqrt(3)` = 0
Here `a = sqrt(3), b = 10, c = -8sqrt(3)`
D = b2 - 4ac
= `(10)^2 - 4 xx sqrt(3) xx (-8sqrt(3))`
= 100 + 96
= 196
∵ x = `(-b ± sqrt("D"))/(2a)`
= `(-10 ± sqrt(196))/(2 xx sqrt(3))`
= `(-10 ± 14)/(2sqrt(3)`
∴ x1 = `(-10 + 14)/(2sqrt(3)`
= `(4)/(2sqrt(3)`
= `(2 xx sqrt(3))/(sqrt(3) xx sqrt(3)`
= `(2sqrt(3))/(3)`
x2 = `(-10 - 14)/(2sqrt(3)`
= `(-24)/(2sqrt(3)`
= `(-12 xx sqrt(3))/(sqrt(3) xx sqrt(3)`
= `(-12sqrt(3))/(3)`
= `-4sqrt(3)`
Hence x = `(2sqrt(3))/(3), -4sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
If α + β = 5 and α3 +β3 = 35, find the quadratic equation whose roots are α and β.
Check whether the following is the quadratic equation:
x2 - 2x = (-2)(3 - x)
Find the value of discriminant (Δ) for the quadratic equation: `x^2+7x+6=0`
The height of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, form the quadratic equation to find the base of the triangle.
Solve : x(x – 5) = 24
Solve `x = (3x + 1)/(4x)`
Solve `5/(x - 2) - 3/(x + 6) = 4/x`
`x^2+2sqrt2x-6=0`
`4x^2-2(a^2+b^2)x+a^2b^2=0`
If ax + by = = a2 - b2 and bx + ay = 0, then the value of x + y is ______.