Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
`(x - 2)/(x + 2) + (x + 2)/(x - 2)` = 4
उत्तर
`(x - 2)/(x + 2) + (x + 2)/(x - 2)` = 4
⇒ `((x - 2)^2 + (x + 2)^2)/((x + 2)(x - 2)` = 4
⇒ `(x^2 - 4x + 4 + x^2 + 4x + 4)/(x^2 - 4)`
⇒ 2x2 + 8 = 4x2 - 16
⇒ 2x2 + 8 - 4x2 + 16 = 0
⇒ -2x2 + 24 = 0
⇒ x2 - 12 = 0
Here a = 1, b = 0, c = -12
D = b2 - 4ac
= (0)2 - 4 x 1(-12)
= 0 + 48
= 48
∵ x = `(-b ± sqrt("D"))/(2a)`
= `(0 ± sqrt(48))/(2 xx 1)`
= `(±sqrt(48))/(2)`
= `(±sqrt(16 xx 3))/(2)`
= `± (4sqrt(3))/(2)`
= ±`2sqrt(3)`
Hence roots are `2sqrt(3), -2sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
In the following, determine whether the given values are solutions of the given equation or not:
x2 + x + 1 = 0, x = 0, x = 1
Solve `(x - 3)/(x + 3) + (x + 3)/(x - 3) = 2 1/2`
`100x^2-20x+1=0`
`1/x-1-1/(x+5)=6/7,x≠1,-5`
`x/(x+1)+(x+1)/x=2 4/15, x≠ 0,1`
Is x = 5 a solution of the quadratic equation x2 – 2x – 15 = 0?
If x + y = 5 and x - y = 1, then find the value of x.
Solve the following equation by using formula :
`(1)/x + (1)/(x - 2) = 3, x ≠ 0, 2`
Solve:
`2((2x - 1)/(x + 3)) - 3((x + 3)/(2x - 1)) = 5; x ≠ -3, (1)/(2)`
Choose the correct answer from the given four options :
Which of the following is not a quadratic equation?