Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
`(x - 2)/(x + 2) + (x + 2)/(x - 2)` = 4
उत्तर
`(x - 2)/(x + 2) + (x + 2)/(x - 2)` = 4
⇒ `((x - 2)^2 + (x + 2)^2)/((x + 2)(x - 2)` = 4
⇒ `(x^2 - 4x + 4 + x^2 + 4x + 4)/(x^2 - 4)`
⇒ 2x2 + 8 = 4x2 - 16
⇒ 2x2 + 8 - 4x2 + 16 = 0
⇒ -2x2 + 24 = 0
⇒ x2 - 12 = 0
Here a = 1, b = 0, c = -12
D = b2 - 4ac
= (0)2 - 4 x 1(-12)
= 0 + 48
= 48
∵ x = `(-b ± sqrt("D"))/(2a)`
= `(0 ± sqrt(48))/(2 xx 1)`
= `(±sqrt(48))/(2)`
= `(±sqrt(16 xx 3))/(2)`
= `± (4sqrt(3))/(2)`
= ±`2sqrt(3)`
Hence roots are `2sqrt(3), -2sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
Check whether the following is quadratic equation or not.
16x2 − 3 = (2x + 5) (5x − 3)
Without solving, comment upon the nature of roots of the following equations
25x2 – 10x +1=0
Solve the equation `9x^2 + (3x)/4 + 2 = 0`, if possible, for real values of x.
`6x^2+x--12=0`
`3^((x+2))+3^(-x)=10`
`2^2x-3.2^((x+2))+32=0`
If one root of the quadratic equation 6x2 – x – k = 0 is
The perimeter of a rectangular field is 82m and its area is 400m2, find the dimension of the rectangular field.
`2/3`and 1 are the solutions of equation mx2 + nx + 6 = 0. Find the values of m and n.
Solve the following equation by using formula :
`(3x - 4)/(7) + (7)/(3x - 4) = (5)/(2), x ≠ (4)/(3)`