हिंदी

23and 1 are the solutions of equation mx2 + nx + 6 = 0. Find the values of m and n. - Mathematics

Advertisements
Advertisements

प्रश्न

`2/3`and 1 are the solutions of equation mx2 + nx + 6 = 0. Find the values of m and n.

योग

उत्तर

Given equation be mx2 + nx + 6 = 0  ...(1)

Since `2/3` be the solution of the equation (1)

∴ It satisfies equation (1)

Putting `x = 2/3` in equation (1)

We have

`m(2/3)^2 = n(2/3) + 6 = 0`

`\implies (4m)/9 + (2n)/3 + 6 = 0`

`\implies` 4m + 6n + 54 = 0

`\implies` 2m + 3n + 27 = 0  ...(2)

Since x = 1 is the solution of equation (1)

Thus, it must satisfy equation (1)

Putting x = 1 in equation (1)

We have

m + n + 6 = 0   ...(3)

Multiply equation (3) with (2)

We have

2m + 2n + 12 = 0

Subtracting equation (4) from equation (2), we get

(2m + 3n + 27) – (2m + 2n + 12) = 0

`\implies` n + 15 = 0

`\implies` n = –15

From (3); m – 15 + 6 = 0

`\implies` m – 9 = 0

`\implies` m = 9

Hence, value of m = 9 and n = –15

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Quadratic Equations - Exercise 5 (A) [पृष्ठ ५४]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 5 Quadratic Equations
Exercise 5 (A) | Q 4 | पृष्ठ ५४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×