Advertisements
Advertisements
प्रश्न
`4x^2+4bx-(a^2-b^2)=0`
उत्तर
Sol:
We write, `4bx=2(a+b)x-2(a-b)x `as
`4x^2xx[-(a^2-b^2)]=-4(a^2-b^2)x^2=(a+b)x xx[-2(a-b)x]`
`∴ 4x^2+4bx-(a^2-b^2)=0`
⇒ `4x^2+2(a+b)x-2(a-b)x-(a-b)(a+b)=0`
⇒`2x[2x+(a+b)]-(a-b)[2x+(a+b)]=0`
⇒`[2x+(a+b)][2x-(a-b)]=0`
⇒`2x+(a+b)=0 or 2x-(a-b)=0`
⇒`x=(-a+b)/2 or x=(a-b)/2`
Hence, `(-a+b)/2` and `(a-b)/2` are the roots of the given equation
APPEARS IN
संबंधित प्रश्न
In the following, find the value of k for which the given value is a solution of the given equation:
7x2 + kx - 3 = 0, `x=2/3`
Solve `(3x - 2)/(2x - 3) = (3x - 8)/(x + 4)`
Solve the equation `9x^2 + (3x)/4 + 2 = 0`, if possible, for real values of x.
Find the value of x, if a + 7=0; b + 10=0 and 12x2 = ax – b.
Solve the following equation for x and give, in the following case, your answer correct to 2 decimal places:
2x2 – 10x + 5 = 0
Determine whether x = − 1 is a root of the equation `x^2 − 3x + 2 = 0 `or not.
`sqrt3x^2-2sqrt2x-2sqrt3=0`
Check whether the following are quadratic equations: `x - (3)/x = 2, x ≠ 0`
Write the given quadratic equation in standard form.
m (m – 6) = 9
The equation 2x2 – 3x + k = 0 is satisfied by x = 2; the value of k is ______.