Advertisements
Advertisements
प्रश्न
`4x^2-4a^2x+(a^4-b^4)=0`
उत्तर
We write, `-4a^2x=-2(a^2+b^2)x-2(a^2-b^2)x as`
`4x^2xx(a^4-b^4)=4(a^4-b^4)x^2=[-2(a^+b^2)]x xx[-2(a^2-b^2)]x`
∴` 4x^2-4a^2x(a^4-b^4)=0`
⇒`4x^2-2(a^2+b^2)x-2(a^2-b^2)x+(a^2-b^2)(a^2+b^2)=0`
⇒` 2x[2x-(a^2+b^2)]-(a^2-b^2)[2x-(a^2+b^2)]=0`
⇒`[2x-(a^+b^2)][2x-(a^2-b^2)]=0`
⇒` 2x-(a^2+b^2)=0 or 2x-(a^2-b^2)=0`
⇒`x=(a^2+b^2)/2` or `(a^2-b^2)/2`
Hence, `(a^2+b^2)/2` and `(a^2-b^2)/2`are the roots of the given equation.
APPEARS IN
संबंधित प्रश्न
Check whether the following is the quadratic equation:
x2 - 2x = (-2)(3 - x)
The equation 3x2 – 12x + (n – 5) = 0 has equal roots. Find the value of n.
Solve `x^2 - 11/4 x + 15/8 = 0`
`3sqrt(x/5)+3sqrt(5/x)=10`
`3x^2-2sqrt6x+2=0`
`1/(x+1)+2/(x+2)=5/(x+4),x≠-1,-2,-4`
Write the following quadratic equation in standard form ax2 + bx + c = 0 : x (x + 3) = 7
Check whether the following are quadratic equations: `sqrt(3)x^2 - 2x + (3)/(5) = 0`
Solve the following equation by using formula :
a (x2 + 1) = (a2+ 1) x , a ≠ 0
Solve the following equation: `x - (18)/x = 6`. Give your answer correct to two x significant figures.