Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
a (x2 + 1) = (a2+ 1) x , a ≠ 0
उत्तर
a (x2 + 1) = (a2+ 1) x
ax2– (a2 + 1)x + a = 0
Here a = a, b = -(a2 + 1), c = a
D = b2 - 4ac
= [-(a2 + 1)]2 - 4 x a x a
= a4 + 2a2 + 1 - 4a2
= a4 - 2a + 1
= (a2 - 1)2
∵ x = `(-b ± sqrt("D"))/(2a)`
= `((a^2 + 1) ± sqrt((a^2 - 1)^2))/(2a)`
= `((a^2 + 1) + (a^2 - 1))/(2a)`
∴ x1 = `(a^2 + 1 + a^2 - 1)/(2a)`
= `(2a^2)/(2a)`
= a
x2 = `(a^2 + 1 - a^2 + 1)/(2a)`
= `(2)/(2a)`
= `(1)/a`
Hence x = `a, (1)/a`.
APPEARS IN
संबंधित प्रश्न
Check whether the following is the quadratic equation:
(x – 3)(2x + 1) = x(x + 5)
Solve `(3x - 2)/(2x - 3) = (3x - 8)/(x + 4)`
`x^2-(1+sqrt2)x+sqrt2=0`
`3/x+1-1/2=2/(3x-1),x≠-1,1/3`
`x/(x+1)+(x+1)/x=2 4/15, x≠ 0,1`
`2/3`and 1 are the solutions of equation mx2 + nx + 6 = 0. Find the values of m and n.
Solve:
`x/3 + 3/(6 - x) = (2(6 +x))/15; (x ≠ 6)`
Solve the following equation for x and give, in the following case, your answer correct to 3 decimal places:
x2 – 16x + 6 = 0
Solve the following equation by using formula:
2x2 – 6x + 3 = 0
The equation 2x2 – 3x + k = 0 is satisfied by x = 2; the value of k is ______.