Advertisements
Advertisements
Question
Solve the following equation by using formula :
a (x2 + 1) = (a2+ 1) x , a ≠ 0
Solution
a (x2 + 1) = (a2+ 1) x
ax2– (a2 + 1)x + a = 0
Here a = a, b = -(a2 + 1), c = a
D = b2 - 4ac
= [-(a2 + 1)]2 - 4 x a x a
= a4 + 2a2 + 1 - 4a2
= a4 - 2a + 1
= (a2 - 1)2
∵ x = `(-b ± sqrt("D"))/(2a)`
= `((a^2 + 1) ± sqrt((a^2 - 1)^2))/(2a)`
= `((a^2 + 1) + (a^2 - 1))/(2a)`
∴ x1 = `(a^2 + 1 + a^2 - 1)/(2a)`
= `(2a^2)/(2a)`
= a
x2 = `(a^2 + 1 - a^2 + 1)/(2a)`
= `(2)/(2a)`
= `(1)/a`
Hence x = `a, (1)/a`.
APPEARS IN
RELATED QUESTIONS
Check whether the following is the quadratic equation:
(2x - 1)(x - 3) = (x + 5)(x - 1)
Find the value of ‘K’ for which x = 3 is a solution of the quadratic equation
`(K + 2)x^2 - kx + 6 = 0`
Solve the equation `9x^2 + (3x)/4 + 2 = 0`, if possible, for real values of x.
Solve `x + 4/x = -4; x != 0`
Solve:
(x2 + 5x + 4)(x2 + 5x + 6) = 120
Find the value of x, if a+1=0 and `x^2 + ax – 6 = 0`
`a^2b^2x^2+b^2x-1=0`
If -1 and 3 are the roots of x2+px+q=0
then find the values of p and q
Solve the quadratic equation 8x2 – 14x + 3 = 0
- When x ∈ I (integers)
- When x ∈ Q (rational numbers)
Solve the following equation by using formula :
`(1)/(x - 2) + (1)/(x - 3) + (1)/(x - 4)` = 0