Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
`(x + 1)/(x + 3) = (3x + 2)/(2x + 3)`
उत्तर
`(x + 1)/(x + 3) = (3x + 2)/(2x + 3)`
(x + 1) (2x + 3) = (3x + 2) (x + 3)
⇒ 2x2 + 3x + 2x + 3 = 3x2 + 9x + 2x + 6
⇒ 2x2 + 5x + 3 - 3x2 - 11x - 6 = 0
⇒ -x2 - 6x - 3 = 0
⇒ x2 + 6x + 3 = 0
Here a = 1, b = 6, c = 3
D = b2 - 4ac
= (6)2 - 4 x 1 x 3
= 36 - 12
= 24
∵ x = `(-b ± sqrt("D"))/(2a)`
= `(-6 ± sqrt(24))/(2 xx 1)`
= `(6 ± sqrt(4 xx 6))/(2)`
= `(-6 ± 2sqrt(6))/(2)`
= `-3 ± sqrt(6)`
∴ `x_1 = -3 + sqrt(6), x_2 = -3 - sqrt(6)`
Hence x = `-3 + sqrt(6), -3 - sqrt(6)`.
APPEARS IN
संबंधित प्रश्न
Check whether the following is quadratic equation or not.
`x^2 - 2x - sqrtx - 5 = 0`
Without solving, comment upon the nature of roots of the following equation:
x2 – ax – b2 = 0
Solve : x² – 16 = 0
Find the quadratic equation, whose solution set is: {3,5}
Solve the following equation using the formula:
`(2x + 3)/(x + 3) = (x + 4)/(x + 2)`
Solve the following equation using the formula:
`sqrt(6)x^2 - 4x - 2sqrt(6) = 0`
Solve the following equation using the formula:
`(2x)/(x - 4) + (2x - 5)/(x - 3) = 8 1/3`
`x^2+3sqrt3-30=0`
`(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x≠2,4`
Solve the following equation for x and give, in the following case, your answer correct to 2 decimal places:
4x2 – 5x – 3 = 0