Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
`(3x - 4)/(7) + (7)/(3x - 4) = (5)/(2), x ≠ (4)/(3)`
उत्तर
`(3x - 4)/(7) + (7)/(3x - 4) = (5)/(2), x ≠ (4)/(3)`
let `(3x – 4)/(7)` = y, then
`y + (1)/y = (5)/(2)`
⇒ 2y2 + 2 = 5y
⇒ 2y2 – 5y + 2 = 0
⇒ 2y2 – y – 4y + 2 = 0
⇒ y(2y – 1) –2(2y – 1) = 0
⇒ (2y – 1)(y – 2) = 0
Either 2y – 1 = 0,
then 2y = 1
⇒ y = `(1)/(2)`
or
y – 2 = 0,
then y = 2
When y = `(1)/(2)`,
then `(3x - 4)/(7) = (1)/(2)`
⇒ 6x – 8 = 7
⇒ 6x = 7 + 8
⇒ 6x = 15
⇒ x = `(15)/(6) = (5)/(2)`
y = 2, then
`(3x - 4)/(7) = (2)/(1)`
⇒ 3x – 4 = 14
⇒ 3x = 14 + 4 = 18
⇒ x = `(18)/(3)` = 6
∴ x = 6, `(5)/(2)`.
APPEARS IN
संबंधित प्रश्न
Check whether the following is quadratic equation or not.
`x-3/x=x^2`
In the following, find the value of k for which the given value is a solution of the given equation:
x2 - x(a + b) + k = 0, x = a
Solve the equation `9x^2 + (3x)/4 + 2 = 0`, if possible, for real values of x.
Solve (x2 – 3x)2 – 16(x2 – 3x) – 36 =0
Find the quadratic equation, whose solution set is:
{−2, 3}
Find the quadratic equation, whose solution set is:
`{−3, (−2)/5}`
Solve the following equation using the formula:
`4/x - 3 = 5/(2x + 3)`
Without solving comment upon the nature of roots of each of the following equations:
`"x"^2 – "ax" – "b"^2 = 0`
`1/(2a+b+2x)=1/(2a)+1/b+1/(2x)`
If quadratic equation x2 − (m + 1) x + 6 = 0 has one root as x = 3; find the value of m and the root of the equation.