Advertisements
Advertisements
प्रश्न
Solve the following equation by using formula :
`(3x - 4)/(7) + (7)/(3x - 4) = (5)/(2), x ≠ (4)/(3)`
उत्तर
`(3x - 4)/(7) + (7)/(3x - 4) = (5)/(2), x ≠ (4)/(3)`
let `(3x – 4)/(7)` = y, then
`y + (1)/y = (5)/(2)`
⇒ 2y2 + 2 = 5y
⇒ 2y2 – 5y + 2 = 0
⇒ 2y2 – y – 4y + 2 = 0
⇒ y(2y – 1) –2(2y – 1) = 0
⇒ (2y – 1)(y – 2) = 0
Either 2y – 1 = 0,
then 2y = 1
⇒ y = `(1)/(2)`
or
y – 2 = 0,
then y = 2
When y = `(1)/(2)`,
then `(3x - 4)/(7) = (1)/(2)`
⇒ 6x – 8 = 7
⇒ 6x = 7 + 8
⇒ 6x = 15
⇒ x = `(15)/(6) = (5)/(2)`
y = 2, then
`(3x - 4)/(7) = (2)/(1)`
⇒ 3x – 4 = 14
⇒ 3x = 14 + 4 = 18
⇒ x = `(18)/(3)` = 6
∴ x = 6, `(5)/(2)`.
APPEARS IN
संबंधित प्रश्न
Find the quadratic equation, whose solution set is: {-2, 3}
If x = -3 and x = 2/3 are solutions of quadratic equation mx2 + 7x + n = 0, find the values of m and n
Solve the following equation using the formula:
3x2 + 2x – 1 = 0
`48x^2-13x1=0`
` x^2+6x-(a^2+2a-8)=0`
If one root of the quadratic equation 6x2 – x – k = 0 is
Which of the following are quadratic equation:
(2x - 3) (x + 5) = 2 - 3x
Find whether the value x = `(1)/(a^2)` and x = `(1)/(b^2)` are the solution of the equation:
a2b2x2 - (a2 + b2) x + 1 = 0, a ≠ 0, b ≠ 0.
Solve the following equation by using formula :
(2x + 3)(3x – 2) + 2 = 0
Find the values of a and b from the quadratic equation 2x2 – 5x + 7 = 0.