Advertisements
Advertisements
प्रश्न
`1/(2a+b+2x)=1/(2a)+1/b+1/(2x)`
उत्तर
`1/(2a+b+2x)=1/(2a)+1/b+1/(2x)`
⇒`1/(2a+b+2x)=1/(2x)+1/b+1/(2x)`
⇒`(2x-2a-b-2x)/(2x(2a+b+2x))=(2a+b)/(2ab)`
⇒`( -(2a+b))/(4x^2+4ax+2bx)=(2a+b)/(2ab)`
⇒` 4x^2+4ax+2bx=-2ab`
⇒`4x^2+4ax+2bx+2ab=0`
⇒`4x(x+a)+2b(x+a)=0`
⇒`(x+a) (4x+2b)=0`
⇒`x+a=0 or 4x+2b=0`
⇒`x=-a or x=-b/2`
Hence,-a and `-b/2` are the roots of the give equation.
संबंधित प्रश्न
Represent the following situation in the form of a quadratic equation:
The product of two consecutive positive integers is 306. We need to find the integers.
Without solving, comment upon the nature of roots of the following equation:
6x2 – 13x + 4 = 0
Which of the following are quadratic equation in x?
`x-6/x=3`
`4-11x=3x^2`
`10x1/x=3`
Solve:
`((3x + 1)/(x + 1)) + ((x + 1)/(3x + 1)) = 5/2`
Check whether the following are quadratic equation:
(2x + 1) (3x – 2) = 6(x + 1) (x – 2)
Solve the following equation by using formula :
(2x + 3)(3x – 2) + 2 = 0
Solve the following equation by using formula :
x2 + (4 – 3a)x – 12a = 0
The equation (x – 2)2 + 1 = 2x – 3 is: