Advertisements
Advertisements
प्रश्न
`1/(2a+b+2x)=1/(2a)+1/b+1/(2x)`
उत्तर
`1/(2a+b+2x)=1/(2a)+1/b+1/(2x)`
⇒`1/(2a+b+2x)=1/(2x)+1/b+1/(2x)`
⇒`(2x-2a-b-2x)/(2x(2a+b+2x))=(2a+b)/(2ab)`
⇒`( -(2a+b))/(4x^2+4ax+2bx)=(2a+b)/(2ab)`
⇒` 4x^2+4ax+2bx=-2ab`
⇒`4x^2+4ax+2bx+2ab=0`
⇒`4x(x+a)+2b(x+a)=0`
⇒`(x+a) (4x+2b)=0`
⇒`x+a=0 or 4x+2b=0`
⇒`x=-a or x=-b/2`
Hence,-a and `-b/2` are the roots of the give equation.
संबंधित प्रश्न
Check whether the following is the quadratic equation:
(2x - 1)(x - 3) = (x + 5)(x - 1)
Solve (x2 – 3x)2 – 16(x2 – 3x) – 36 =0
Solve the following equation using the formula:
x2 + 2x – 6 = 0
`sqrt3x^2+10x7sqrt3=0`
`x^2-(1+sqrt2)x+sqrt2=0`
Find the solution of the equation 2x2 – mx – 25n = 0; if m + 5 = 0 and n – 1 = 0.
Find the value of a, b, c in the following quadratic equation: 2x2 + 18 = 6x
In each of the following, determine whether the given numbers are solutions of the given equation or not: `x^2 - 3sqrt(3)x + 6 = 0; sqrt(3), -2sqrt(3)`
If the sum of the roots of a quadratic equation is 5 and the product of the roots is also 5, then the equation is:
If x2 – 2x – 3 = 0; values of x correct to two significant figures are ______.