Advertisements
Advertisements
प्रश्न
Solve the following equation using the formula:
`x^2 - 6 = 2sqrt(2)x`
उत्तर
`x^2 - 6 = 2sqrt(2)x`
`\implies x^2-2sqrt2x-6=0`
Here a = 1, b = `-2sqrt(2)` and c = − 6
Then `x = (-b +- sqrt(b^2 - 4ac))/(2a)`
= `(-(-2sqrt2) +- sqrt((-2sqrt(2))^2 - 4(1)(-6)))/(2(1))`
= `(2sqrt(2) +- sqrt(32))/2`
= `(2sqrt(2) +- 4sqrt(2))/2`
= `(2sqrt(2) + 4sqrt(2))/2` and `(2sqrt(2) - 4sqrt(2))/2`
= `(6sqrt(2))/2` and `(-2sqrt(2))/2`
= `3sqrt(2)` and `-sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Check whether the following is the quadratic equation:
(2x - 1)(x - 3) = (x + 5)(x - 1)
Without solving comment upon the nature of roots of each of the following equations:
`"x"^2 – "ax" – "b"^2 = 0`
Which of the following are quadratic equation in x?
`(x+1/x)^2=2(x+1/x)+3`
`4x^2-9x=100`
`(x+3)/(x-2)-(1-x)/x=17/4`
`3x-4/7+7/(3x-4)=5/2,x≠4/3`
`a/(x-b)+b/(x-a)=2,x≠b,a`
Solve :
`3x^2 - 2sqrt6x + 2 = 0`
3a2x2 + 8abx + 4b2 = 0
Solve the following equation by using formula :
4x2 – 4ax + (a2 – b2) = 0