Advertisements
Advertisements
प्रश्न
Solve the following equations graphically :
x + 3y = 8
3x = 2 + 2y
उत्तर
x + 3y = 8
3x = 2 + 2y
x + 3y = 8 ________(1)
3x = 2 + 2y _______(2)
Now, x + 3y = 8
⇒ y = `(8 - x)/(3)`
Corresponding values of x and y can be tabulated as :
x | -1 | 2 | 5 |
y | 3 | 2 | 1 |
Plotting points (-1, 3), (2, 2), (5, 1) and joiniing them, we get a line I, which is the graph of equation (1).
Again, 3x = 2 + 2y
⇒ x = `(2x + 2y)/(3)`
Corresponding values of x and y can be tabulated as :
x | 2 | 4 | 0 |
y | 2 | 5 | -1 |
Plotting points (2, 2), (4, 5), (0, -1) and joining them, we get a line I2 which is the graph of equation (2).
The two lines I2 and I2 intersect at the point (2, 2). Hence, x = 2, y = 2 is the unique solution of the given equation.
APPEARS IN
संबंधित प्रश्न
Solve graphically the simultaneous equations given below. Take the scale as 2 cm = 1 unit on both the axes.
x - 2y - 4 = 0
2x + y = 3
The sides of a triangle are given by the equations y - 2 = 0; y + 1 = 3 (x - 2) and x + 2y = 0.
Find, graphically :
(i) the area of a triangle;
(ii) the coordinates of the vertices of the triangle.
Using the same axes of co-ordinates and the same unit, solve graphically :
x + y = 0 and 3x - 2y = 10.
(Take at least 3 points for each line drawn).
Solve the following equations graphically :
3y = 5 - x
2x = y + 3
Solve the following equations graphically :
x - 2y = 2
`x/(2) - y` = 1
Solve the following equations graphically :
2x - 6y + 10 = 0
3x - 9y + 25 = 0
Solve the following system of equations graphically
x - y + 1 = 0
4x + 3y = 24
Solve the following system of equations graphically:
6x - 3y + 2 = 7x + 1
5x + 1 = 4x - y + 2
Also, find the area of the triangle formed by these lines and x-axis in each graph.
Solve graphically
3x + 2y = 4, 9x + 6y – 12 = 0
Solve graphically
y = 2x + 1, y + 3x – 6 = 0