मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the Following L.P.P. Graphically Minimize Z = 3x + 5y Subject to 2x + 3y ≥ 12 -x + Y ≤ 3 X ≤ 4 Y ≥ 3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following L.P.P. graphically Minimize Z = 3x + 5y Subject to 2x + 3y ≥ 12 
-x + y ≤ 3 
x ≤ 4 
y ≥ 3 

आलेख
बेरीज

उत्तर

Inequation  Equation  Points on line 
2x + 3y ≥12  2x + 3y = 12  (0,4),(6, 0) 
- x + y ≤ 3  - x+ y = 3  (0,3), (-3,0) 
x ≤ 4  x = 4  
y ≥ 3  y = 3  

Requjred region is bounded region ABCDA Co-ordinates of corner points are 

A = (1,5,3) B = (4, 3) 

C = (4, 7) D = (0.6, 3.6) 

Corner points Z = 3x + 5y 

At A(1 ,5, 3)  Z = 3 (1.5) + 5 (3) 
                        = 4.5 + 15 = 19.5

At B(4. 3)     Z = 3(4) + 5(3)
                       = 12 + 15 = 27

At C(4, 7)    Z = 3 (4 ) + 5 (7) 
                     =  12 + 35 = 47 

At D(0.6, 3.6)  Z = 3 (0.6) + 5 (3.6)
                         = ·1.8 + 18 = 19.8 

From the above data ·
Minimum value of Z is 19.5 at point A ( 1.5, 3)
Solution of L.P.P. is X = 1.5, Y = 3, `Z_min` = 19.5 

shaalaa.com

Notes

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Electro Corp. Co. manufactures two electrical products :Air conditioners and Fans. The assembly process for each is similar in which both require a certain amount of wiring and drilling. Each air conditioner takes 4 hours for wiring and 2 hours for drilling. Each fan also takes 2 hours for wiring and 1 hour for drilling. During the next production period, 240 hours of wiring time are available and upto 100 hours of drilling time may be used. Each air-conditioner assembled may be sold for Rs. 2,000 profit and each fan assembled may be sold for Rs. 1,000 profit. Formulate this problem as an L.P.P. in order to maximize the profit.


Solve the following using graphical method : 

Minimize :Z=3x+5y

`2x+3x>=12` 

`-x+y<=3` 

`x<=4,y>=3,x>=0,y>=0` 

 

 


There are found jobs to be completed. Each job must go through machines M1 , M2 , M3 in the order M1 - M2 - M3.  Processing time in hours is given below. Determine the optimal sequesnce and idle time for machine M1 .

Jobs A B C D
M1 5 8 7 3
M2 6 7 2 5
M3 7 8 10 9

Compute CDR using the information given below :

Age group
( Years )
0-15 15-35 35-65 65 and above
Population 9000 25000 32000 9000

Total number of deaths in a year is given to be 900.


Calculate the CDR for District A and B and compare them: 

Age group (in years) District A District B
No.of.
persons
(in '000)
No.of.
deaths
No.of.
persons
(in '000)
No.of. deaths
0 - 15 1 20 2 50
15 - 60 3 30 7 70
60 and above 2 40 1 25

Minimize: Z = 2x + y 

Subject to: x + y ≤ 5 

x + 2y ≤  8 

4x + 3y ≥ 12 

x ≥  o,  y ≥ o 

Solve graphically.


Find the graphical solution for following system of linear inequations

`"x"_1/60 + "x"_2/90 <= 1 ; 5x_1 + 8x_2 ≤ 600 , x_1 ≥ 0 , x_2 ≥ 0`


 Minimize : Z = 3x1 + 2x2

Subject to constraints 

5x1 + x2 ≥ 10

2x1 + 2x2 ≥ 12

x1 + 4x2 ≥ 12

x1 , x2 ≥ 0


Solve the following L.P.P.:

Maximize Z = 4x + 5y
subject to       2x + y ≥ 4
                       x + y ≤ 5,
                       0 ≤ x ≤ 3,
                       0 ≤ y ≤ 3


A person makes two types of gift items A and B requiring the services of a cutter and a finisher.  Gift item A requires 4 hours of the cutter's time and 2 hours of finisher's time. Fifth item B requires 2 hours of the cutter's time and 4 hours of finisher's time. The cutter and finisher have 208 hours and 152 hours available time respectively every month. The profit on one gift item of type A is ₹ 75 and on one gift item of type, B is ₹ 125. Assuming that the person can sell all the gift items produced, determine how many gift items of each type should he make every month to obtain the best returns?


Mr. Rajesh has ₹ 1800 to spend on fruits for a meeting. Grapes cost ₹ 160/kg llnd peaches ₹ 200/kg. Let x and g represent the number of kilogrames of grapes and peaches he can buy. Write the graph of an inequation to model the amounts of grapes and peaches he can buy within his budget. 


Find common region for the following system of linear inequations :

x ≥ -3, 4x - 5y ≥ -20, 3x + 4y ≤ 12, y ≥ -2


Solve the following L.P.P. : 
Minimize : Z = 4x + 10y, 
Subject to : 2x + 5y ≤10 , 5x + 3y ≤ 15, 
                  x + 2y  ≥ 30, x ≥ 0, y ≥ 0. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×