Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation:
4x2 - 4ax + (a2 - b2) = 0 where a , b ∈ R.
उत्तर
4x2 - 4ax + (a2 - b2) = 0 where a , b ∈ R
⇒ 4x2 - {2(a + b)x + 2(a - b)x} + a2 - b2 = 0
⇒ {4x2 - 2(a + b)x} - {2(a - b)x - (a2 - b2)} = 0
⇒ 2x{2x - (a + b)} - (a - b) {2x - (a + b)} = 0
⇒ {2x - (a + b)} {2x - (a - b)} = 0
⇒ 2x - (a + b) = 0
or
2x - (a - b) = 0
⇒ x = `(a + b)/(2)` or x = `(a - b)/(2)`.
APPEARS IN
संबंधित प्रश्न
Solve for x
`(x - 1)/(2x + 1) + (2x + 1)/(x - 1) = 2, "where x" != -1/2, 1`
Solve the following quadratic equations by factorization:
`x^2-(sqrt3+1)x+sqrt3=0`
`3x^2-x-2=0`
Determine whether the values given against the quadratic equation are the roots of the equation.
2m2 – 5m = 0, m = 2, `5/2`
If 1 is a root of the quadratic equation \[3 x^2 + ax - 2 = 0\] and the quadratic equation \[a( x^2 + 6x) - b = 0\] has equal roots, find the value of b.
Solve the following equation: `("a+b")^2 "x"^2 - 4 "abx" - ("a - b")^2 = 0`
The sum of the squares of three consecutive natural numbers is 110. Determine the numbers.
Two pipes running together can 1 fill a cistern in 11 1/9 minutes. If one pipe takes 5 minutes more than the other to fill the cistern find the time when each pipe would fill the cistern.
Solve the following equation by factorization
`3x - (8)/x `= 2
Find two consecutive even natural numbers such that the sum of their squares is 340.