मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ९ वी

Solve the following simultaneous equation. 2x - y = 5 ; 3x + 2y = 11 - Algebra

Advertisements
Advertisements

प्रश्न

Solve the following simultaneous equation.

2x - y = 5 ; 3x + 2y = 11 

बेरीज

उत्तर

2x - y = 5     ...(I)

3x + 2y = 11    ...(II)

Multiplying (I) with 2 we get

4x - 2y = 10    ...(III)

Adding (II) with (III)

    3x + 2y = 11
+ 4x - 2y = 10
    7x     =    21

⇒ x = 3

Putting the value of x in (I) we get

∴ 2x - y = 5 

⇒ 2 × 3 - y = 5

⇒ 6 - y = 5

⇒ y = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Linear Equations in Two Variables - Problem Set 5 [पृष्ठ ९१]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
पाठ 5 Linear Equations in Two Variables
Problem Set 5 | Q (2) (v) | पृष्ठ ९१

संबंधित प्रश्‍न

Solve the following system of equations by using the method of elimination by equating the co-efficients.

`\frac { x }{ y } + \frac { 2y }{ 5 } + 2 = 10; \frac { 2x }{ 7 } – \frac { 5 }{ 2 } + 1 = 9`


Solve the following pair of linear equation by the elimination method and the substitution method: 

3x + 4y = 10 and 2x – 2y = 2


In an envelope there are some 5 rupee notes and some 10 rupee notes. Total amount of these notes together is 350 rupees. Number of 5 rupee notes are less by 10 than twice number of 10 rupee notes. Then find the number of 5 rupee and 10 rupee notes.


The sum of the digits in a two-digits number is 9. The number obtained by interchanging the digits exceeds the original number by 27. Find the two-digit number.


Solve the following simultaneous equation.

`x/3 + 5y = 13 ; 2x + y/2 = 19`


By equating coefficients of variables, solve the following equation.

x − 2y = −10 ; 3x − 5y = −12


If 52x + 65y = 183 and 65x + 52y = 168, then find x + y = ?


The sum of the two-digit number and the number obtained by interchanging the digits is 132. The digit in the ten’s place is 2 more than the digit in the unit’s place. Complete the activity to find the original number.

Activity: Let the digit in the unit’s place be y and the digit in the ten’s place be x.

∴ The number = 10x + y

∴ The number obtained by interchanging the digits = `square`

∴ The sum of the number and the number obtained by interchanging the digits = 132

∴ 10x + y + 10y + x = `square`

∴ x + y = `square`      .....(i)

By second condition,

Digit in the ten’s place = digit in the unit’s place + 2

∴ x – y = 2     ......(ii)

Solving equations (i) and (ii)

∴ x = `square`, y = `square`

Ans: The original number = `square`


The ratio of two numbers is 2:3. If 5 is added in each numbers, then the ratio becomes 5:7 find the numbers.

The ratio of two numbers is 2:3.

So, let the first number be 2x and the second number be `square`.

From the given condition,

`((2x) + square)/(square + square) = square/square`

`square (2x + square) = square (square + square)`

`square + square = square + square`

`square - square = square - square`

`- square = - square`

x = `square`

So, The first number = `2 xx square = square`

and, Second number =  `3 xx square = square`

Hence, the two numbers are `square` and `square`


Read the following passage:

Two schools 'P' and 'Q' decided to award prizes to their students for two games of Hockey ₹ x per student and Cricket ₹ y per student. School 'P' decided to award a total of ₹ 9,500 for the two games to 5 and 4 Students respectively; while school 'Q' decided to award ₹ 7,370 for the two games to 4 and 3 students respectively.

Based on the above information, answer the following questions:

  1. Represent the following information algebraically (in terms of x and y).
  2. (a) What is the prize amount for hockey?
    OR
    (b) Prize amount on which game is more and by how much?
  3. What will be the total prize amount if there are 2 students each from two games?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×